Journal of Innovative Optical Health Sciences, Volume. 11, Issue 1, 1730009(2018)

Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes

Svitlana M. Levchenko1, Artem Pliss2, and Junle Qu1、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province College of Optoelectronic Engineering, Shenzhen University Shenzhen, Guangdong Province 518060, P. R. China
  • 2Institute for Lasers, Photonics and Biophotonics University at Buffalo, State University of New York Buffalo, NY 14260-3000, USA
  • show less
    References(56)

    [1] [1] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edition, Springer, New York (2006).

    [2] [2] A. Ettinger, T. Wittmann, “Fluorescence live cell imaging," Methods Cell. Biol. 123, 77-94 (2014).

    [3] [3] J. C. Waters, T. Wittmann, “Quantitative imaging in cell biology: Preface," Methods Cell. Biol. 123, xix xx (2014).

    [4] [4] W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer, Berlin (2005).

    [5] [5] O. Shimomura, F. H. Johnson, Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea," J. Cell. Comp. Physiol. 59, 223-239 (1962).

    [6] [6] D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, M. J. Cormier, “Primary structure of the Aequorea victoria green-fluorescent protein," Gene 111, 229-233 (1992).

    [7] [7] M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, D. C. Prasher, “Green fluorescent protein as a marker for gene-expression," Science 263, 802-805 (1994).

    [8] [8] M. Zimmer, “GFP: From jellyfish to the Nobel prize and beyond," Chem. Soc. Rev. 38, 2823-2832 (2009).

    [9] [9] M. Ormo, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, S. J. Remington, “Crystal structure of the Aequorea victoria green fluorescent protein," Science 273, 1392-1395 (1996).

    [10] [10] R. Heim, D. C. Prasher, R. Y. Tsien, “Wavelength mutations and posttranslational autoxidation of green fluorescent protein," Proc. Natl. Acad. Sci. USA 91, 12501-12504 (1994).

    [11] [11] R. Heim, A. B. Cubitt, R. Y. Tsien, “Improved green fluorescence," Nature 373, 663-664 (1995).

    [12] [12] G. J. Kremers, S. G. Gilbert, P. J. Cranfill, M. W. Davidson, D. W. Piston, “Fluorescent proteins at a glance," J. Cell. Sci. 124, 157-160 (2011).

    [13] [13] A. W. Scruggs, C. L. Flores, R. Wachter, N. W. Woodbury, “Development and characterization of green fluorescent protein mutants with altered lifetimes," Biochemistry 44, 13377-13384 (2005).

    [14] [14] A. S. Mishin, F. V. Subach, I. V. Yampolsky, W. King, K. A. Lukyanov, V. V. Verkhusha, “The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore," Biochemistry 47, 4666-4673 (2008).

    [15] [15] M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species," Nat. Biotechnol. 17, 969-973 (1999).

    [16] [16] N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein," Nat. Biotechnol. 22, 1567-1572 (2004).

    [17] [17] R. Heim, R. Y. Tsien, “Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer," Curr. Biol. 6, 178-182 (1996).

    [18] [18] P. E. Konold, E. Yoon, J. Lee, S. L. Allen, P. P. Chapagain, B. S. Gerstman, C. K. Regmi, K. D. Piatkevich, V. V. Verkhusha, T. Joo, R. Jimenez, “Fluorescence from multiple chromophore hydrogenbonding states in the far-red protein TagRFP675," J. Phys. Chem. Lett. 7, 3046-3051 (2016).

    [19] [19] D. S. Bindels, L. Haarbosch, L. van Weeren, M. Postma, K. E. Wiese, M. Mastop, S. Aumonier, G. Gotthard, A. Royant, M. A. Hink, T. W. Gadella, Jr., “mScarlet: A bright monomeric red fluorescent protein for cellular imaging," Nat. Methods 14, 53-56 (2017).

    [20] [20] C. P. Toseland, “Fluorescent labeling and modification of proteins," J. Chem. Biol. 6, 85-95 (2013).

    [21] [21] M. Modesti, “Fluorescent labeling of proteins," Methods Mol. Biol. 783, 101-120 (2011).

    [22] [22] K. M. Dean, A. E. Palmer, “Advances in fluorescence labeling strategies for dynamic cellular imaging," Nat. Chem. Biol. 10, 512-523 (2014).

    [23] [23] G. S. Filonov, K. D. Piatkevich, L. M. Ting, J. Zhang, K. Kim, V. V. Verkhusha, “Bright and stable near-infrared fluorescent protein for in vivo imaging," Nat. Biotechnol. 29, 757-761 (2011).

    [24] [24] K. G. Chernov, T. A. Redchuk, E. S. Omelina, V. V. Verkhusha, “Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes," Chem. Rev. 117, 6423-6446 (2017).

    [25] [25] E. Hemmer, A. Benayas, F. Legare, F. Vetrone, “Exploiting the biological windows: Current perspectives on fluorescent bioprobes emitting above 1000 nm," Nanoscale Horiz. 1, 168-184 (2016).

    [26] [26] D. M. Shcherbakova, V. V. Verkhusha, “Nearinfrared fluorescent proteins for multicolor in vivo imaging," Nat. Methods 10, 751-754 (2013).

    [27] [27] G. Crivat, J. W. Taraska, “Imaging proteins inside cells with fluorescent tags," Trends Biotechnol. 30, 8-16 (2012).

    [28] [28] E. Snapp, “Design and use of fluorescent fusion proteins in cell biology," Curr. Protoc. Cell Biol. 21, 21-24 (2005).

    [29] [29] R. Ebrecht, C. Don Paul, F. S. Wouters, “Fluorescence lifetime imaging microscopy in the medical sciences," Protoplasma 251, 293-305 (2014).

    [30] [30] J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, K. Suhling, “Fluorescence lifetime and polarizationresolved imaging in cell biology," Curr. Opin. Biotechnol. 20, 28-36 (2009).

    [31] [31] A. Periasamy, R. M. Clegg, FLIM Microscopy in Biology and Medicine, Taylor & Francis, Boca Raton (2010).

    [32] [32] K. Suhling, L. M. Hirvonen, J. A. Levitt, P.-H. Chung, C. Tregidgo, A. Le Marois, D. A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, “Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments," Med. Photonics 27, 3-40 (2015).

    [33] [33] M. Y. Berezin, S. Achilefu, “Fluorescence lifetime measurements and biological imaging," Chem. Rev. 110, 2641-2684 (2010).

    [34] [34] A. Le Marois, S. Labouesse, K. Suhling, R. Heintzmann, “Noise-Corrected Principal Component Analysis of fluorescence lifetime imaging data," J. Biophoton. (2016).

    [35] [35] A. C. Sohnel, W. Kohl, I. Gregor, J. Enderlein, B. Rieger, K. B. Busch, “Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution," Biochim. Biophys. Acta 1857, 1290-1299 (2016).

    [36] [36] K. Suhling, J. Siegel, D. Phillips, P. M. French, S. Leveque-Fort, S. E. Webb, D. M. Davis, “Imaging the environment of green fluorescent protein," Biophys. J. 83, 3589-3595 (2002).

    [37] [37] T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H. J. Rahn, M. Patting, F. Koberling, J. Enderlein, M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy," Nat. Methods 13, 257-262 (2016).

    [38] [38] H. Anton, N. Taha, E. Boutant, L. Richert, H. Khatter, B. Klaholz, P. Ronde, E. Real, H. de Rocquigny, Y. Mely, “Investigating the cellular distribution and interactions of HIV-1 nucleocapsid protein by quantitative fluorescence microscopy," PLoS One 10, e0116921 (2015).

    [39] [39] M. Kneen, J. Farinas, Y. Li, A. S. Verkman, “Green fluorescent protein as a noninvasive intracellular pH indicator," Biophys. J. 74, 1591-1599 (1998).

    [40] [40] M. F. Abad, G. Di Benedetto, P. J. Magalhaes, L. Filippin, T. Pozzan, “Mitochondrial pH monitored by a new engineered green fluorescent protein mutant," J. Biol. Chem. 279, 11521-11529 (2004).

    [41] [41] M. Tantama, Y. P. Hung, G. Yellen, “Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor," J. Am. Chem. Soc. 133, 10034-10037 (2011).

    [42] [42] J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, R. Quidant, “Mapping intracellular temperature using green fluorescent protein," Nano Lett. 12, 2107-2111 (2012).

    [43] [43] A. Pliss, L. Zhao, T. Y. Ohulchanskyy, J. Qu, P. N. Prasad, “Fluorescence lifetime of fluorescent proteins as an intracellular environment probe sensing the cell cycle progression," ACS Chem. Biol. 7, 1385-1392 (2012).

    [44] [44] A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: Monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging," Theranostics 5, 919-930 (2015).

    [45] [45] M. Bencina, “Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors," Sensors 13, 16736-16758 (2013).

    [46] [46] T. Nakabayashi, S. Oshita, R. Sumikawa, F. Sun, M. Kinjo, N. Ohta, “pH dependence of the fluorescence lifetime of enhanced yellow fluorescent protein in solution and cells," J. Photochem. Photobiol. A 235, 65-71 (2012).

    [47] [47] F. J. Schmitt, B. Thaa, C. Junghans, M. Vitali, M. Veit, T. Friedrich, “eGFP-pHsens as a highly sensitive fluorophore for cellular pH determination by fluorescence lifetime imaging microscopy (FLIM)," Biochem. Biophys. Acta 1837, 1581-1593 (2014).

    [48] [48] T. Nakabayashi, H. P. Wang, M. Kinjo, N. Ohta, “Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements," Photochem. Photobiol. Sci. 7, 668-670 (2008).

    [49] [49] S. Poea-Guyon, H. Pasquier, F. Merola, N. Morel, M. Erard, “The enhanced cyan fluorescent protein: A sensitive pH sensor for fluorescence lifetime imaging," Anal. Bioanal. Chem. 405, 3983-3987 (2013).

    [50] [50] H. Ogawa, S. Inouye, F. I. Tsuji, K. Yasuda, K. Umesono, “Localization, tra±cking, and temperaturedependence of the Aequorea green fluorescent protein in cultured vertebrate cells," Proc. Natl. Acad. Sci. USA 92, 11899-11903 (1995).

    [51] [51] S. Kiyonaka, T. Kajimoto, R. Sakaguchi, D. Shinmi, M. Omatsu-Kanbe, H. Matsuura, H. Imamura, T. Yoshizaki, I. Hamachi, T. Morii, Y. Mori, “Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells," Nat. Methods 10, 1232-1238 (2013).

    [52] [52] M. Nakano, Y. Arai, I. Kotera, K. Okabe, Y. Kamei, T. Nagai, “Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response," PLoS One 12, e0172344 (2017).

    [53] [53] K. Deepankumar, S. P. Nadarajan, D. H. Bae, K. H. Baek, K. Y. Choi, H. Yun, “Temperature sensing using red fluorescent protein," Biotechnol. Bioprocess. Eng. 20, 67-72 (2015).

    [54] [54] H. Itoh, S. Arai, T. Sudhaharan, S. C. Lee, Y. T. Chang, S. Ishiwata, M. Suzuki, E. B. Lane, “Direct organelle thermometry with fluorescence lifetime imaging microscopy in single myotubes," Chem. Commun. (Camb.) 52, 4458-4461 (2016).

    [55] [55] K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy," Nat. Commun. 3, 705 (2012).

    [56] [56] B. Treanor, P. M. Lanigan, K. Suhling, T. Schreiber, I. Munro, M. A. Neil, D. Phillips, D. M. Davis, P. M. French, “Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse," J. Microsc. 217, 36-43 (2005).

    Tools

    Get Citation

    Copy Citation Text

    Svitlana M. Levchenko, Artem Pliss, Junle Qu. Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes[J]. Journal of Innovative Optical Health Sciences, 2018, 11(1): 1730009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 16, 2017

    Accepted: Jun. 7, 2017

    Published Online: Sep. 17, 2018

    The Author Email: Qu Junle (jlqu@szu.edu.cn)

    DOI:10.1142/s1793545817300099

    Topics