Optics and Precision Engineering, Volume. 31, Issue 12, 1804(2023)

Multi-scale YOLOv5 for solar cell defect detection

Yafang CHEN1... Fei LIAO1,*, Xinyu HUANY1, Jing YANG2 and Hengxiang GONG1 |Show fewer author(s)
Author Affiliations
  • 1College of Science, Chongqing University of Technology, Chongqing400054, China
  • 2Sichuan YC Garden Technology Co., Ltd, Yibin644000, China
  • show less
    References(24)

    [1] AP MARUGÁN, FP MÁRQUEZ. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renewable Energy, 153, 334-348(2020).

    [2] B Y SU, H Y CHEN, Z ZHOU. BAF-detector: an efficient CNN-based detector for photovoltaic cell defect detection. IEEE Transactions on Industrial Electronics, 69, 3161-3171(2022).

    [3] H Chen, H Zhao, D Han et al. Structure-aware-based crack defect detection for multicrystalline solar cells. Measurement, 151, 107170(2020).

    [4] [4] 4陶志勇, 于子佳, 林森. PSO_SVM算法在太阳能电池板裂缝缺陷检测研究[J]. 电子测量与仪器学报, 2021, 35(1): 18-25.TAOZ Y, YUZ J, LINS. Research on crack defect detection of solar cell based on PSO_SVM[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 18-25. (in Chinese)

    [5] A RODRIGUEZ, C GONZALEZ, A FERNANDEZ et al. Automatic solar cell diagnosis and treatment. Journal of Intelligent Manufacturing, 32, 1163-1172(2021).

    [6] MW AKRAM, G LI, Y JIN et al. CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy, 189, 116319(2019).

    [7] B Y SU, H Y CHEN, P CHEN et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network. IEEE Transactions on Industrial Informatics, 17, 4084-4095(2021).

    [8] X ZHANG, Y HAO, H SHANGGUAN et al. Detection of surface defects on solar cells by fusing Multi-channel convolution neural networks. Infrared Physics & Technology, 108, 103334(2020).

    [9] T NAKAZAWA, D V KULKARNI. Anomaly detection and segmentation for wafer defect patterns using deep convolutional encoder-decoder neural network architectures in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32, 250-256(2019).

    [10] B Y SU, L YU, W YANG. Event-Based High Frame-Rate Video Reconstruction with A Novel Cycle-Event Network, 86-90(25).

    [11] [11] 11王宸, 张秀峰, 刘超, 等. 改进YOLOv3的轮毂焊缝缺陷检测[J]. 光学 精密工程, 2021, 29(8): 1942-1954. doi: 10.37188/OPE.20212908.1942WANGC, ZHANGX F, LIUC, et al. Detection method of wheel hub weld defects based on the improved YOLOv3[J]. Opt. Precision Eng., 2021, 29(8): 1942-1954. (in Chinese). doi: 10.37188/OPE.20212908.1942

    [12] [12] 12朱威, 王立凯, 靳作宝, 等. 引入注意力机制的轻量级小目标检测网络[J]. 光学 精密工程, 2022, 30(8): 998-1010. doi: 10.37188/OPE.20223008.0998ZHUW, WANGL K, JINZ B, et al. Lightweight small object detection network with attention mechanism[J]. Opt. Precision Eng., 2022, 30(8): 998-1010. (in Chinese). doi: 10.37188/OPE.20223008.0998

    [13] [13] 13郭峰, 朱启兵, 黄敏, 等. 基于改进YOLOV4的陶瓷基板瑕疵检测[J]. 光学 精密工程, 2022, 30(13): 1631-1641. doi: 10.37188/OPE.20223013.1631GUOF, ZHUQ B, HUANGM, et al. Defect detection of ceramic substrate based on improved YOLOV4[J]. Opt. Precision Eng., 2022, 30(13): 1631-1641. (in Chinese). doi: 10.37188/OPE.20223013.1631

    [15] M H GUO, T X XU, J J LIU et al. Attention mechanisms in computer vision: a survey. Computational Visual Media, 8, 331-368(2022).

    [16] J F DAI, H Z QI, Y W XIONG et al. Deformable Convolutional Networks, 764-773(22).

    [17] X Z ZHU, H HU, S LIN et al. Deformable ConvNets V2: More Deformable, Better Results, 9300-9308(15).

    [18] Q B HOU, D Q ZHOU, J S FENG. Coordinate Attention for Efficient Mobile Network Design, 13708-13717(20).

    [19] S JUMABOEV, D JURAKUZIEV, M LEE. Photovoltaics plant fault detection using deep learning techniques. Remote Sensing, 14, 3728(2022).

    [20] [20] 20李经宇, 杨静, 孔斌, 等. 基于注意力机制的多尺度车辆行人检测算法[J]. 光学 精密工程, 2021, 29(6): 1448-1458. doi: 10.37188/OPE.20212906.1448LIJ Y, YANGJ, KONGB, et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Opt. Precision Eng., 2021, 29(6): 1448-1458. (in Chinese). doi: 10.37188/OPE.20212906.1448

    [21] T SUN, H XING, S CAO et al. A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network. Energy Reports, 8, 1219-1229(2022).

    [22] [22] 22何自芬, 陈光晨, 王森, 等. 融合自注意力特征嵌入的夜间机场跑道异物入侵检测[J]. 光学 精密工程, 2022, 30(13): 1591-1605. doi: 10.37188/OPE.20223013.1591HEZ F, CHENG CH, WANGS, et al. Detection of foreign object debris on night airport runway fusion with self-attentional feature embedding[J]. Opt. Precision Eng., 2022, 30(13): 1591-1605. (in Chinese). doi: 10.37188/OPE.20223013.1591

    [24] [24] 24中国光伏行业协会. 中国光伏行业协会标准[EB/OL]. (2020-08-14)[2022-11-10]. http://www.chinapv.org.cn/standard_list/772.html.CPIA. China Photovoltaic Industry Association Standards[EB/OL]. (2020-08-14)[2022-11-10]. http://www.chinapv.org.cn/standard_list/772.html.(in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Yafang CHEN, Fei LIAO, Xinyu HUANY, Jing YANG, Hengxiang GONG. Multi-scale YOLOv5 for solar cell defect detection[J]. Optics and Precision Engineering, 2023, 31(12): 1804

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Sep. 9, 2022

    Accepted: --

    Published Online: Jul. 25, 2023

    The Author Email: LIAO Fei (liaofei@cqut.edu.cn)

    DOI:10.37188/OPE.20233112.1804

    Topics