Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 4, 452(2023)

A review of radiation-hardened electronics

ZENG Chao, XU Xianguo, and ZHONG Le
Author Affiliations
  • [in Chinese]
  • show less
    References(85)

    [1] [1] RUDIE N J. Principles and techniques of radiation hardening[M]. 3rd ed. California:Western Periodicals Company, 1986.

    [2] [2] MA T P, DRESSENDORFER P V. Ionizing radiation effects in MOS devices and circuits[M]. Wiley, New York: John Wiley & Sons, 1989.

    [3] [3] HOLMES-SIEDLE A,ADAMS L. Handbook of radiation effects[M]. Oxford:Oxford University Press, 1993.

    [4] [4] CLAEYS C,SIMOEN E. Radiation effects in advanced semiconductor materials and devices[M]. Berlin:Springer, 2002.

    [5] [5] BADHWAR G D,O'NEILL P M,TROUNG A G. Galactic cosmic radiation environment models[R]. NASA,JSC-CN-20414, 2001.

    [6] [6] MORTON T L. Estimation of the radiation environment based on the NASA AP-8 and AE-8 models[R]. NASA, 2004.

    [7] [7] SASAKI M,NAKAO N,NAKAMURA T,et al. Measurements of the response functions of an NE213 organic liquid scintillator to neutrons up to 800 MeV[J]. Nuclear Instruments and Methods in Physics Research A, 2002,480(2-3):440-447.

    [8] [8] GORDON M S, GOLDHAGEN P, RODBELL K P, et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004,51(6):3427-3434.

    [9] [9] POIVEY C. Radiation hardness assurance for space systems[R]. IEEE NSREC Short Course Notebook, 2002:V1-V57.

    [10] [10] PEASE R. Microelectronic piece part radiation hardness assurance for space systems[R]. IEEE NSREC Short Course Notebook, 2004:II1-II56.

    [11] [11] SCHWANK J R,SHANEYFELT M R,DODD P E. Radiation hardness assurance testing of microelectronic devices and integrated circuits:radiation environments,physical mechanisms, and foundations for hardness assurance[R]. SAND2008-6851P, 2008.

    [12] [12] GINET G P,O'BRIEN T P,HUSTON S L,et al. AE9,AP9 and SPM:new models for specifying the trapped energetic particle and space plasma environment[J]. Space Science Reviews, 2013,179(1-4):579-615.

    [13] [13] AUTRAN J L,MUNTEANU D. Soft errors from particles to circuits[M]. Boca Raton:CRC Press, 2015.

    [14] [14] CUSTER J. Hostile radiation effects on systems[R]. SAND2017-2826PE, 2017.

    [15] [15] LIU Huilan, HOU Yingwei, LI Hui, et al. Cosmic-ray neutron fluxes and spectra at different altitudes based on Monte Carlo simulations[J]. Applied Radiation and Isotopes, 2021(175):1-7.

    [23] [23] IEC TS 62396-1. Process management for avionics-atmospheric radiation effects―part 1:accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment[S]. 2006.

    [24] [24] WIRTH J L, ROGERS S C. The transient response of transistors and diodes to ionizing radiation[J]. IEEE Transactions on Nuclear Science, 1964,11(5):24-38.

    [25] [25] DODD P E, VIZKELETHY G, WALSH D S, et al. Radiation-induced prompt photocurrents in microelectronics: physics[R]. SAND2003-0094, 2003.

    [26] [26] SANCHEZ R,MOLLEY P. Sandia national laboratories microelectronics overview[R]. SAND2016-9281PE, 2016.

    [33] [33] ENLOW E W, PEASE R L, COMBS W E, et al. Response of advanced bipolar processes to ionizing radiation[J]. IEEE Transactions on Nuclear Science, 1991,38(6):1342-1351.

    [34] [34] BUNSON P E,DI VENTRA M,PANTELIDES S T,et al. Hydrogen-related defects in irradiated SiO2[J]. IEEE Transactions on Nuclear Science, 2000,47(6):2289-2296.

    [35] [35] HJALMARSON H P, WITCZAK S C, SCHULTZ P A, et al. A mechanism for enhanced low-dose-rate sensitivity of bipolar transistors[R]. SAND2000-0530, 2000.

    [36] [36] WITCZAK S C, KING E E, SAKS N S, et al. Geometric component of charge pumping current in nMOSFETs due to low-temperature irradiation[J]. IEEE Transactions on Nuclear Science, 2002,49(6):2662-2666.

    [37] [37] SHANEYFELT M R,PEASE R L,SCHWANK J R,et al. Impact of passivation layers on enhanced low-dose-rate sensitivity and pre-irradiation elevated temperature stress effects in bipolar linear ICs[J]. IEEE Transactions on Nuclear Science, 2002,49(6): 3171-3179.

    [38] [38] SHANEYFELT M R, PEASE R L, MAHER M C, et al. Passivation layers for reduced total dose effects and ELDRS in linear bipolar devices[J]. IEEE Transactions on Nuclear Science, 2003,50(6):1784-1790.

    [39] [39] HJALMARSON H P,PEASE R L,WITCZAK S C,et al. Mechanisms for radiation dose-rate sensitivity of bipolar transistors[J]. IEEE Transactions on Nuclear Science, 2003,50(6):1901-1909.

    [40] [40] EDWARDS A H, SCHULTZ P A, HJALMARSON H P. Spontaneous ionization of hydrogen atoms at the Si-SiO2 interface[J]. Physical Review B, 2004,69(12):126318.

    [41] [41] BOCH J,SAIGNé F,SCHRIMPF R D,et al. Effect of switching from high to low dose rate on linear bipolar technology radiation response[J]. IEEE Transactions on Nuclear Science, 2004,51(5):2896-2902.

    [42] [42] TSETSERIS L, SCHRIMPF R D, FLEETWOOD D M, et al. Common origin for enhanced low-dose-rate sensitivity and bias temperature instability under negative bias[J]. IEEE Transactions on Nuclear Science, 2005,52(6):2265-2271.

    [43] [43] BOCH J,SAIGNE F,TOUBOUL A D,et al. Dose rate effects in bipolar oxides:competition between trap filling and recombination[J]. Applied Physics Letters, 2006,88(23):232113.

    [44] [44] FLEETWOOD D M,SCHRIMPF R D,PANTELIDES S T,et al. Electron capture,hydrogen release and enhanced gain degradation in linear bipolar devices[J]. IEEE Transactions on Nuclear Science, 2008,55(6):2986-2991.

    [45] [45] PEASE R L,SCHRIMPF R D,FLEETWOOD D M. ELDRS in bipolar linear circuits:a review[J]. IEEE Transactions on Nuclear Science, 2009,56(4):1894-1908.

    [46] [46] CHEN Dakai, PEASE R, KRUCKMEYER K, et al. Enhanced low dose rate sensitivity at ultra-low dose rates[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2983-2990.

    [47] [47] WITCZAK S C,LACOE R C,MAYER D C,et al. Space charge limited degradation of bipolar oxide at low electric fields[J]. IEEE Transactions on Nuclear Science, 1998,45(6):2339-2351.

    [48] [48] ESQUEDA I S, BARNABY H J, ADELL P C, et al. Modeling low dose rate effects in shallow trench isolation oxides[J]. IEEE Transactions on Nuclear Science, 2011:58(6):2945-2952.

    [49] [49] ROWSEY N L,LAW M E,SCHRIMPF R D,et al. A quantitative model for ELDRS and H2 degradation effects in irradiated oxides based on first principles calculations[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2937-2944.

    [52] [52] HARA K,KOCHIYAMA M,MOCHIZUKI A,et al. Radiation resistance of SOI pixel devices fabricated with OKI 0.15 μm FD-SOI technology[J]. IEEE Transactions on Nuclear Science, 2009,56(5):2896-2904.

    [53] [53] HUGHES H,MCMARR P,ALLES M,et al. Total ionizing dose radiation effects on 14 nm FinFET and SOI UTBB technologies [C]// 2015 IEEE Radiation Effects Data Workshop(REDW). Boston,USA:IEEE, 2015:1-6.

    [54] [54] LEE J H. Bulk FinFETs:design at 14 nm node and key characteristics[M]// Nano devices and circuit techniques for low energy applications and energy harvesting. Dordrecht:Springer, 2016:33-64.

    [55] [55] KING M P, WU X, ELLER M, et al. Analysis of TID process, geometry, and bias condition dependence in 14 nm FinFETs and implications for RF and SRAM performance[J]. IEEE Transactions on Nuclear Science, 2017,64(1):285-292.

    [56] [56] RADAMSON H,ZHANG Y,HE X,et al. The challenges of advanced CMOS process from 2D to 3D[J]. Applied Sciences, 2017,7 (10):1047.

    [59] [59] CASAS L M J,CERESA D,KULIS S,et al. Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip[J]. Journal of Instrumentation:an IOP and SISSA Journal, 2017,12(2):C02039.

    [60] [60] BORGHELLO G,FACCIO F,LERARIO E,et al. Dose-rate sensitivity of 65 nm MOSFETs exposed to ultrahigh doses[J]. IEEE Transactions on Nuclear Science, 2018,65(8):1482-1487.

    [61] [61] PRIVAT A,BARNABY H J,SPEAR M,et al. Evidence of interface trap build-up irradiated 14 nm bulk FinFET technologies[R]. SAND2020-10812C, 2020.

    [62] [62] MA T, BONALDO S,MATTIAZZO S,et al. TID degradation mechanisms in 16 nm bulk FinFETs irradiated to ultrahigh doses[J]. IEEE Transactions on Nuclear Science, 2021,68(8):1571-1578.

    [63] [63] GAO Yuan,LU Kai,CHANG Yongwei. Investigation of negative bias effect on radiation hardening for double SOI technology[J]. IEEE Transactions on Nuclear Science, 2022,69(4):908-994.

    [64] [64] FUJIMORI T, WATANABE M. A 603 Mrad total-ionizing-dose tolerance optically reconfigurable gate array VLSI[C]// 2018 International Conference on Signals and Systems(ICSigSys). Bali,Indonesia:IEEE, 2018:249-254.

    [65] [65] SEIFERT N, GILL B, JAHINUZZAMAN S, et al. Soft error susceptibilities of 22 nm tri-gate devices[J]. IEEE Transactions on Nuclear Science, 2012,59(6):2666-2673.

    [66] [66] TANG D,LI Y H,ZHANG G H,et al. Single event upset sensitivity of 45 nm FDSOI and SOI FinFET SRAM[J]. Science China Technological Sciences, 2013,56(3):780-785.

    [67] [67] BARNABY H J,SCHRIMPF R D,STERNBERG A L,et al. Proton radiation response mechanisms in bipolar analog circuits[J]. IEEE Transactions on Nuclear Science, 2001,48(6):2074-2080.

    [68] [68] BALL D R, SCHRIMPF R D, BARNABY H J. Experimental analysis of proton-induced displacement and ionization damage using gate-controlled lateral PNP bipolar transistors[R]. NTRS-NASA Technical Reports Server, 2006.

    [69] [69] ANDERSON J D. Neutron beam testing methodology and results for a complex programmable multiprocessor SoC[D]. Provo, Utah,USA:Brigham Young University, 2019.

    [70] [70] HUBERT G,ARTOLA L,REGIS D. Impact of scaling on the soft error sensitivity of bulk,FDSOI and FinFET technologies due to atmospheric radiation[J]. Integration:The VLSI Journal, 2015(50):39-47.

    [71] [71] ZHANG Ying,LIU Yang,ZHOU Hang. Ultra-slow dynamic annealing of neutron-induced defects in n-type silicon:role of charge carriers[J]. European Physical Journal Plus, 2020(135):827.

    [74] [74] KANHAIYA P S,LAU C,HILLS G,et al. Carbon nanotube-based CMOS SRAM:1 kbit 6T SRAM arrays and 10T SRAM cells[J]. IEEE Transactions on Electron Devices, 2019,66(12):5375-5380.

    [84] [84] HARTMAN E F. Aging and radiation effects in stockpile electronics[R]. SAN099-0679C, 1999.

    [85] [85] HORN K M. Managing age-related changes in device radiation-response[R]. SAND2008-6403C, 2008.

    [86] [86] HORN K M. Laser measurement techniques for detecting age-related degradation of device radiation response[R]. SAND2009-3064C, 2009.

    [87] [87] LI Xingji,LIU Chaoming,YANG Jianqun. Synergistic effect of ionization and displacement damage in NPN transistors caused by protons with various energies[J]. IEEE Transaction on Nuclear Science, 2015,62(3):1375-1382.

    [88] [88] WANG C,CHEN W,YAO Z,et al. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors[J]. Nuclear Instruments & Methods in Physics Research A, 2016(831):322-327.

    [89] [89] WANG C, CHEN W, LIU Y, et al. The effects of gamma irradiation on neutron displacement sensitivity of lateral PNP bipolar transistors[J]. Nuclear Instruments & Methods in Physics Research A, 2016(831):328-333.

    [90] [90] SONG Yu, ZHANG Ying, LIU Yang, et al. Mechanism of synergistic effects of neutron-and Gamma-ray-radiated PNP bipolar transistors[J]. ACS Applied Electronic Materials, 2019,1(4):538-547.

    [95] [95] HATTAR K,HANSON D. Sandia's experimental radiation capabilities[R]. Sandia National Laboratories, 2017.

    [96] [96] BIELEJEC Edward. Ion beam implantation for nanofabrication and modification[R]. SAND2021-0033PE, 2021.

    [99] [99] SEESTROM Susan. Sandia national laboratories nuclear physics activities[R]. SAND2021-3669PE, 2021.

    [100] [100] BARNABY H J,SCHRIMPF R D,STERNBERG A L,et al. Proton radiation response mechanisms in bipolar analog circuits[J]. IEEE Transaction on Nuclear Science, 2001,48(6):2074-2080.

    [103] [103] RASHKEEV S N,CIRBA C R,FLEETWOOD D M,et al. Physical model for enhanced interface-trap formation at low dose rates[J]. IEEE Transaction on Nuclear Science, 2002,49(6):2650-2655.

    [104] [104] BOCH J,SAIGNE F,SCHRIMPF R D,et al. Physical model for the low-dose-rate effect in bipolar devices[J]. IEEE Transaction on Nuclear Science, 2006,53(6):3655-3660.

    [105] [105] HENNIGAN G L,HOEKSTRA R J,CASTRO J P,et al. Simulation of neutron radiation damage in silicon semiconductor devices[R]. SAND2007-XXX7157, 2007.

    [106] [106] PERSHENKOV V S,CHUMAKOV K A,NIKIFOROV A Y,et al. Interface trap model for the low-dose-rate effect in bipolar devices[C]// 2007 The 9th European Conference on Radiation and Its Effects on Components and Systems. Deauville,France: IEEE, 2007:10-14.

    [107] [107] HJALMARSON H P, PEASE R L, DEVINE R. Calculation of radiation dose-rate sensitivity of bipolar transistors[J]. IEEE Transaction on Nuclear Science, 2008,55(6):3009-3015.

    [109] [109] ESQUEDA I S,BARNABY H J,ADELL P C,et al. Modeling low dose rate effects in shallow trench isolation oxides[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2945-2952.

    [110] [110] CHEN X J,BARNABY H J,ADELL P,et al. Modeling the dose rate response and the effects of hydrogen in bipolar technologies[J]. IEEE Transactions on Nuclear Science, 2009,56(6):3196-3202.

    [111] [111] BARNABY H J, VERMEIRE B, CAMPOLA M J. Improved model for increased surface recombination current in irradiated bipolar junction transistors[J]. IEEE Transactions on Nuclear Science, 2015,62(4):1658-1664.

    [112] [112] WANG Chenhui,BAI Xiaoyan,CHEN Wei,et al. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation[J]. Nuclear Instruments and Methods in Physics Research, 2015(796):108-113.

    [113] [113] ESQUEDA I S,BARNABY H J,KING M P. Compact modeling of total ionizing dose and aging effects in MOS technologies[R]. SAND2015-0868J, 2015.

    [117] [117] HARRINGTON R C,KAUPPILA J S,MAHARREY J A,et al. Empirical modeling of FinFET SEU cross sections across supply voltage[J]. IEEE Transactions on Nuclear Science, 2019,66(7):1427-1432.

    [118] [118] COLLIS S S. Overview of Sandia and ASC program[R]. SAND2020-10970C, 2020.

    [119] [119] EL-HAGEEN H M. Modeling the performance characteristics of optocoupler under irradiated fields[J]. Multiscale and Multidisciplinary Modeling,Experiments and Design, 2020,3(1):33-39.

    [120] [120] ZHANG Ying,LIU Yang,ZHOU Hang,et al. Ultra-slow dynamic annealing of neutron-induced defects in n-type silicon: role of charge carriers[J]. European Physical Journal Plus, 2020(135):827.

    [121] [121] FAN Linjie,BI Jinshun,XI Kai,et al. Investigation of radiation effects on FD-SOI hall sensors by TCAD simulations[J]. Sensors, 2020,20(14):3946.

    [122] [122] YI S, TALIN A A, MARINELLA M J, et al. Physical compact model for three-terminal SONOS synaptic circuit element[R]. SAND2022-5364J, 2022.

    [123] [123] BLACK J D. Modeling and simulation approaches to single-event effects in microelectronics[R]. SAND2020-2046PE, 2020.

    [124] [124] MUSSON L,HENNIGAN G,GAO X,et al. Charon user manual:v.2.1(revisionl)[R]. SAND2020-5266, 2020.

    Tools

    Get Citation

    Copy Citation Text

    ZENG Chao, XU Xianguo, ZHONG Le. A review of radiation-hardened electronics[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(4): 452

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 17, 2023

    Accepted: --

    Published Online: Jan. 17, 2024

    The Author Email:

    DOI:10.11805/tkyda2023083

    Topics