Laser & Optoelectronics Progress, Volume. 48, Issue 7, 71602(2011)

Research Progress of Metamaterials for Terahertz Applications

Ding Pei1、* and Liang Erjun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(86)

    [1] [1] R. Marqués, F. Martín, M. Sorolla. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications [M]. New York: Sohn Widey & Sons, Inc., 2008. 1~41

    [2] [2] V. Shalaev. Optical negative-index metamaterials [J]. Nat. Photonics, 2007, 1(1): 41~48

    [3] [3] Liu Shenggang. Recent development of terahertz science and technology[J]. China Basic Science, 2006, 8(1): 7~12

    [4] [4] J. B. Pendry, A. J. Holden, D. J. Robbins et al.. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE Trans. Microw. Theory., 1999, 47(11): 2075~2084

    [5] [5] W. J. Padilla, M. T. Aronsson, C. Highstrete et al.. Electrically resonant terahertz metamaterials: theoretical and experimental investigations [J]. Phys. Rev. B, 2007, 75(4): 041102(R)

    [6] [6] Fang Anle, Dai Xiaoyu, Ling Xiaohui et al.. Metamaterials at terahertz and their applications [J]. Laser & Optoelectronics Progress, 2010, 47(5): 051601

    [7] [7] H. T. Chen, W. J. Padilla, J. M. O. Zide et al.. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597~600

    [8] [8] H. T. Chen, S. Palit, T. Tyler et al.. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves [J]. Appl. Phys. Lett., 2008, 93(9): 091117

    [9] [9] H. T. Chen, H. Lu, A. K. Azad et al.. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays [J]. Opt. Express, 2008, 16(11): 7641~7648

    [10] [10] H. T. Chen, W. J. Padilla, M. J. Cich et al.. A metamaterial solid-state terahertz phase modulator [J]. Nat. Photonics, 2009, 3(3): 148~151

    [11] [11] W. L. Chan, H. T. Chen, A. J. Taylor et al.. A spatial light modulator for terahertz beams [J]. Appl. Phys. Lett., 2009, 94(21): 213511

    [12] [12] O. Paul, C. Imhof, B. Lagel et al.. Polarization-independent active metamaterial for high-frequency terahertz modulation [J]. Opt. Express, 2009, 17(2): 819~827

    [13] [13] W. J. Padilla, A. J. Taylor, C. Highstrete et al.. Dynamical electric and magnetic metamaterial response at terahertz frequencies [J]. Phys. Rev. Lett., 2006, 96(10): 107401

    [14] [14] H. T. Chen, W. J. Padilla, J. M. O. Zide et al.. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices [J]. Opt. Lett., 2007, 32(12): 1620~1622

    [15] [15] H. T. Chen, J. F. O′Hara, A. K. Azad et al.. Experimental demonstration of frequency-agile terahertz metamaterials [J]. Nat. Photonics, 2008, 2(5): 295~298

    [16] [16] N. H. Shen, M. Kafesaki, T. Koschny et al.. Broadband blueshift tunable metamaterials and dual-band switches [J]. Phys. Rev. B, 2009, 79(16): 161102(R)

    [17] [17] J. M. Manceau, N. H. Shen, M. Kafesaki et al.. Dynamic response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation [J]. Appl. Phys. Lett., 2010, 96(2): 021111

    [18] [18] A. K. Azad, H. T. Chen, S. R. Kasarla et al.. Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature [J]. Appl. Phys. Lett., 2009, 95(1): 011105

    [19] [19] N. H. Shen, M. Massaouti, M. Gokkavas et al.. Optically implemented broadband blueshift switch in the terahertz regime [J]. Phys. Rev. Lett., 2011, 106(3): 037403

    [20] [20] H. Tao, A. Strikwerda, K. Fan et al.. Reconfigurable terahertz metamaterials [J]. Phys. Rev. Lett., 2009, 103(14): 147401

    [21] [21] Q. Y. Wen, H. W. Zhang, Q. H. Yang et al.. Terahertz metamaterials with VO2 cut-wires for thermal tunability [J]. Appl. Phys. Lett., 2010, 97(2): 021111

    [22] [22] T. Driscoll, S. Palit, M. M. Qazilbash et al.. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide [J]. Appl. Phys. Lett., 2008, 93(2): 024101

    [23] [23] F. Zhang, Q. Zhao, L. Kang et al.. Magnetic control of negative permeability metamaterials based on liquid crystals [J]. Appl. Phys. Lett., 2008, 92(19): 193104

    [24] [24] T. Driscoll, G. O. Andreev, D. N. Basov et al.. Tuned permeability in terahertz split-ring resonators for devices and sensors [J]. Appl. Phys. Lett., 2007, 91(6): 062511

    [25] [25] C. Debus, P. H. Bolivar. Frequency selective surfaces for high sensitivity terahertz sensing [J]. Appl. Phys. Lett., 2007, 91(18): 184102

    [26] [26] J. F. O′Hara, R. Singh, I. Brener et al.. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations [J]. Opt. Express, 2008, 16(3): 1786~1795

    [27] [27] F. Miyamaru, S. Hayashi, C. Otani et al.. Terahertz surface-wave resonant sensor with a metal hole array [J]. Opt. Lett., 2006, 31(8): 1118~1120

    [28] [28] Y. Yuan, C. Bingham, T. Tyler et al.. A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators [J]. Appl. Phys. Lett., 2008, 93(19): 191110

    [29] [29] Y. Yuan, C. Bingham, T. Tyler et al.. Dual-band planar electric metamaterial in the terahertz regime [J]. Opt. Express, 2008, 16(13): 9746~9752

    [30] [30] M. Li, Z. C. Wen, J. X. Fu et al.. Composite metamaterials with dual-band magnetic resonances in the terahertz frequency regime [J]. J. Phys. D: Appl. Phys., 2009, 42(11): 115420

    [31] [31] C. M. Bingham, H. Tao, X. L. Liu et al.. Planar wallpaper group metamaterials for novel terahertz applications [J]. Opt. Express, 2008, 16(23): 18565~18575

    [32] [32] Y. Ma, Q. Chen, A. Khalid et al.. Terahertz dual-band resonator on silicon [J]. Opt. Lett., 2010, 35(4): 469~471

    [33] [33] J. W. Lee, M. A. Seo, D. J. Park et al.. Shape resonance omni-directional terahertz filters with near-unity transmittance [J]. Opt. Express, 2006, 14(3): 1253~1259

    [34] [34] J. Han, J. Gu, X. Lu et al.. Broadband resonant terahertz transmission in a composite metal-dielectric structure [J]. Opt. Express, 2009, 17(19): 16527~16534

    [35] [35] O. Paul, R. Beigang, M. Rahm. Highly selective terahertz bandpass filters based on trapped mode excitation [J]. Opt. Express, 2009, 17(21): 18590~18595

    [36] [36] K. Konishi, T. Sugimoto, B. Bai et al.. Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings [J]. Opt. Express, 2007, 15(15): 9575~9583

    [37] [37] N. Kanda, K. Konishi, M. Kuwata-Gonokami. Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns [J]. Opt. Express, 2007, 15(18): 11117~11125

    [38] [38] N. Kanda, K. Konishi, M. Kuwata-Gonokami. Light-induced terahertz optical activity [J]. Opt. Lett., 2009, 34(19): 3000~3002

    [39] [39] R. Singh, E. Plum, C. Menzel et al.. Terahertz metamaterial with asymmetric transmission [J]. Phys. Rev. B, 2009, 80(15): 153104

    [40] [40] R. Singh, E. Plum, W. Zhang et al.. Highly tunable optical activity in planar achiral terahertz metamaterials [J]. Opt. Express, 2010, 18(13): 13425~13430

    [41] [41] A. C. Strikwerda, K. Fan, H. Tao et al.. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies [J]. Opt. Express, 2009, 17(1): 136~149

    [42] [42] X. G. Peralta, E. I. Smirnova, A. K. Azad et al.. Metamaterials for THz polarimetric devices [J]. Opt. Express, 2009, 17(2): 773~783

    [43] [43] P. Weis, O. Paul, C. Imhof et al.. Strongly birefringent metamaterials as negative index terahertz wave plates [J]. Appl. Phys. Lett., 2009, 95(17): 171104

    [44] [44] C. Imhof, R. Zengerle. Strong birefringence in left-handed metallic metamaterials [J]. Opt. Commun., 2007, 280(1): 213~216

    [45] [45] N. I. Landy, S. Sajuyigbe, J. J. Mock et al.. Perfect metamaterial absorber [J]. Phys. Rev. Lett., 2008, 100(20): 207402

    [46] [46] Q. Y. Wen, Y. S. Xie, H. W. Zhang et al.. Transmission line model and fields analysis of metamaterial absorber in the terahertz band [J]. Opt. Express, 2009, 17(22): 20256~20265

    [47] [47] H. Tao, N. I. Landy, C. M. Bingham et al.. A metamaterial absorber for the terahertz regime: design, fabrication and characterization [J]. Opt. Express, 2008, 16(10): 7181~7188

    [48] [48] H. Tao, C. M. Bingham, A. C. Strikwerda et al.. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization [J]. Phys. Rev. B, 2008, 78(24): 241103(R)

    [49] [49] N. I. Landy, C. M. Bingham, T. Tyler et al.. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging [J]. Phys. Rev. B, 2009, 79(12): 125104

    [50] [50] D. Y. Shchegolkov, A. K. Azad, J. F. O′Hara et al.. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers [J]. Phys. Rev. B, 2010, 82: 205117

    [51] [51] Q. Y. Wen, H. W. Zhang, Y. S. Xie et al.. Dual band terahertz metamaterial absorber: design, fabrication, and characterization [J]. Appl. Phys. Lett., 2009, 95(24): 241111

    [52] [52] H. Tao, C. M. Bingham, D. Pilon et al.. A dual band terahertz metamaterial absorber [J]. J. Phys. D: Appl. Phys., 2010, 43(22): 225102

    [53] [53] J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces [J]. Science, 2004, 305(5685): 847~848

    [54] [54] G. Welsh, N. Hunt, K. Wynne. Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating [J]. Phys. Rev. Lett., 2007, 98(2): 026803

    [55] [55] G. Welsh, K. Wynne. Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces [J]. Opt. Express, 2009, 17(4): 2470~2480

    [56] [56] Y. Gao, M. Chen, C. Yang et al.. Analysis of terahertz generation via nanostructure enhanced plasmonic excitations [J]. J. Appl. Phys., 2009, 106(7): 074302

    [57] [57] A. A. Zharov, R. E. Noskov, M. V. Tsarev. Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer [J]. J. Appl. Phys., 2009, 106(7): 073104

    [58] [58] B. Reinhard, O. Paul, R. Beigang et al.. Experimental and numerical studies of terahertz surface waves on a thin metamaterial film [J]. Opt. Lett., 2010, 35(9): 1320~1322

    [59] [59] G. Acuna, S. F. Heucke, F. Kuchler et al.. Surface plasmons in terahertz metamaterials [J]. Opt. Express, 2008, 16(23): 18745~18751

    [60] [60] C. R. Williams, S. R. Andrews, S. A. Maier et al.. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces [J]. Nat. Photonics, 2008, 2(3): 175~179

    [61] [61] X. C. Lu, W. L. Zhang. Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries [J]. Appl. Phys. Lett., 2009, 94(18): 181106

    [62] [62] R. Singh, C. Rockstuhl, C. Menzel et al.. Spiral-type terahertz antennas and the manifestation of the Mushiake principle [J]. Opt. Express, 2009, 17(12): 9971~9980

    [63] [63] F. Miyamaru, Y. Saito, M. Takeda et al.. Emission of terahertz radiations from fractal antennas [J]. Appl. Phys. Lett., 2009, 95: 221111

    [64] [64] J. Lee, K. Lee, H. Park et al.. Tunable subwavelength focusing with dispersion-engineered metamaterials in the terahertz regime [J]. Opt. Lett., 2010, 35(13): 2254~2256

    [65] [65] M. Navarro-Cía, M. Beruete, S. Agrafiotis et al.. Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms [J]. Opt. Express, 2009, 17(20): 18184~18195

    [66] [66] A. Ishikawa, Z. Shuang, D. A. Genov et al.. Deep subwavelength terahertz waveguides using gap magnetic plasmon [J]. Phys. Rev. Lett., 2009, 102(4): 043904

    [67] [67] J. G. Han, A. Lakhtakia, C. W. Qiu. Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability [J]. Opt. Express, 2008, 16(19): 14390~14396

    [68] [68] J. G. Han, A. Lakhtakia. Semiconductor split-ring resonators for thermally tunable terahertz metamaterials [J]. J. Mod. Opt., 2009, 56(4): 554~557

    [69] [69] Q. Bai, C. Liu, J. Chen et al.. Tunable slow light in semiconductor metamaterial in a broad terahertz regime [J]. J. Appl. Phys., 2010, 107(9): 093104

    [70] [70] V. Giannini, A. Berrier, S. A. Maier et al.. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies [J]. Opt. Express, 2010, 18(3): 2797~2807

    [71] [71] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis et al.. Lasing spaser [J]. Nat. Photonics, 2008, 2(6): 351~354

    [72] [72] C. Walther, G. Scalari, M. Amanti et al.. Microcavity laser oscillating in a circuit-based resonator [J]. Science, 2010, 327(5972): 1495

    [73] [73] D. P. Gaillot, C. Croenne, D. Lippens. An all-dielectric route for terahertz cloaking [J]. Opt. Express, 2008, 16(6): 3986~3992

    [74] [74] H. Němec, P. Ku el, F. Kadlec et al.. Tunable terahertz metamaterials with negative permeability [J]. Phys. Rev. B, 2009, 79(24): 241108

    [75] [75] R. Yahiaoui, H. Němec, P. Ku el et al.. Broadband dielectric terahertz metamaterials with negative permeability [J]. Opt. Lett., 2009, 34(22): 3541~3543

    [76] [76] J. Q. Gu, R. Singh, Z. Tian et al.. Terahertz superconductor metamaterial [J]. Appl. Phys. Lett., 2011, 97(7): 071102

    [77] [77] B. B. Jin, C. H. Zhang, S. Engelbrecht et al.. Low loss and magnetic field-tunable superconducting terahertz metamaterial [J]. Opt. Express, 2010, 18(16): 17504~17509

    [78] [78] H. T. Chen, H. Yang, R. Singh et al.. Tuning the resonance in high-temperature superconducting terahertz metamaterials [J]. Phys. Rev. Lett., 2010, 105(24): 247402

    [79] [79] X. Liu, S. MacNaughton, D. Shrekenhamer et al.. Metamaterials on parylene thin film substrates: design, fabrication, and characterization at terahertz frequency [J]. Appl. Phys. Lett., 2010, 96(1): 011906

    [80] [80] M. Walther, A. Ortner, H. Meier et al.. Terahertz metamaterials fabricated by inkjet printing [J]. Appl. Phys. Lett., 2009, 95(25): 251107

    [81] [81] H. Tao, A. C. Strikwerda, K. Fan et al.. Terahertz metamaterials on free-standing highly-flexible polyimide substrates [J]. J. Phys. D: Appl. Phys., 2008, 41(23): 232004

    [82] [82] X. G. Peralta, M. C. Wanke, C. L. Arrington et al.. Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies [J]. Appl. Phys. Lett., 2009, 94(16): 161113

    [83] [83] H. O. Moser, L. K. Jian, H. S. Chen et al.. All-metal self-supported THz metamaterial-the meta-foil [J]. Opt. Express, 2009, 17(26): 23914~23919

    [84] [84] H. O. Moser, J. A. Kong, L. K. Jian et al.. Free-standing THz electromagnetic metamaterials [J]. Opt. Express, 2008, 16(18): 13773~13780

    [85] [85] S. Waselikowski, K. Kratt, V. Badilita et al.. Three-dimensional microcoils as terahertz metamaterial with electric and magnetic response [J]. Appl. Phys. Lett., 2010, 97(26): 261105

    [86] [86] N. Zheludev. The road ahead for metamaterials [J]. Science, 2010, 328(5978):582~583

    CLP Journals

    [1] Jiang Linkun, Wu Liang, Yao Jianquan. Research Progress of Ferromagnetic Materials in Terahertz Wave Band[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80022

    Tools

    Get Citation

    Copy Citation Text

    Ding Pei, Liang Erjun. Research Progress of Metamaterials for Terahertz Applications[J]. Laser & Optoelectronics Progress, 2011, 48(7): 71602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 6, 2010

    Accepted: --

    Published Online: May. 20, 2011

    The Author Email: Pei Ding (dingpei@zzia.edu.cn)

    DOI:10.3788/lop48.071602

    Topics