Journal of Inorganic Materials, Volume. 39, Issue 5, 477(2024)
[2] W FANG, L SHEN, H LI et al. Effect of film formation processes of NiO
[3] Q LUO, H MA, Q HOU et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater., 1706777(2018).
[4] J WEI, F GUO, X WANG et al. SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability. Adv. Mater., 1805153(2018).
[5] M LI, J ZHOU, L TAN et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power- conversion efficiency. The Innovation, 100310(2022).
[6] C T ZHU, Y YANG, F Y LIN et al. Electrodeposited transparent PEDOT for inverted perovskite solar cells: improved charge transport and catalytic performances. Rare Metals, 2402(2021).
[7] Y YANG, T CHEN, D PAN et al. MAPbI3/agarose photoactive composite for highly stable unencapsulated perovskite solar cells in humid environment. Nano Energy, 104246(2020).
[8] D BI, C YI, J LUO et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy, 16142(2016).
[9] Z YAO, D QU, Y GUO et al. Grain boundary regulation of flexible perovskite solar cells
[10] C LIU, J SUN, X F JIANG et al. A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells. Science China Chemistry, 281(2021).
[11] P C WANG, V GOVINDAN, C H CHIANG et al. Room- temperature-processed fullerene/TiO2 nanocomposite electron transporting layer for high-efficiency rigid and flexible planar perovskite solar cells. Solar RRL, 2000247(2020).
[12] C Y CHANG, C Y CHU, Y C HUANG et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces, 4955(2015).
[13] L L GAO, L S LIANG, X X SONG et al. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. J. Mater. Chem. A, 3704(2016).
[14] X ZHOU, Y ZHANG, W KONG et al. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication
[15] Y ZONG, Y ZHOU, Y ZHANG et al. Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability. Chem, 1404(2018).
[16] Z ZHAO, W XU, G PAN et al. Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ions. Mater. Res. Bull, 142(2019).
[17] H MEI, Y WU, C WANG et al. Synergistic engineering of bromine and cetyltrimethylammonium chloride molecules enabling efficient and stable flexible perovskite solar cells. J. Mater. Chem. A, 19425(2020).
[18] Q SUN, P FASSL, D BECKER‐KOCH et al. Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Adv. Energy. Mater, 1700977(2017).
[19] Y LI, K LU, X LING et al. High performance planar-heterojunction perovskite solar cells using amino-based fulleropyrrolidine as the electron transporting material. J. Mater. Chem. A, 10130(2016).
[20] J YANG, Q HONG, Z YUAN et al. Unraveling photostability of mixed cation perovskite films in extreme environment. Adv. Opt. Mater., 1800262(2018).
[21] M LI, Y G YANG, Z K WANG et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater., 1901519(2019).
[23] J THIESBRUMMEL, F PEÑA-CAMARGO, K O BRINKMANN et al. Understanding and minimizing
[24] C WANG, Z SONG, D ZHAO et al. Improving performance and stability of planar perovskite solar cells through grain boundary passivation with block copolymers. Solar RRL, 1900078(2019).
[25] B P NGUYEN, G Y KIM, W JO et al. Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1-
[26] Q WALI, Y IQBAL, B PAL et al. Tin oxide as an emerging electron transport medium in perovskite solar cells. Sol. Energy Mater. Sol. Cells, 102(2018).
[27] T LEIJTENS, G E EPERON, A J BARKER et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci., 3472(2016).
[28] Z HUANG, X HU, C LIU et al. Nucleation and crystallization control
[29] C CAPIGLIA, P MUSTARELLI, E QUARTARONE et al. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics, 73(1999).
[30] B SCROSATI, F CROCE, L PERSI. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J. Electrochem. Soc., 1718(2000).
[31] H HAN, W LIU, J ZHANG et al. A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid‐state redox electrolyte for dye-sensitized nanocrystalline solar cells. Adv. Funct. Mater., 1940(2005).
Get Citation
Copy Citation Text
Tian CHEN, Yuan LUO, Liu ZHU, Xueyi GUO, Ying YANG.
Category:
Received: Nov. 16, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: YANG Ying (muyicaoyang@csu.edu.cn)