Journal of Inorganic Materials, Volume. 39, Issue 5, 477(2024)
Recently, perovskite solar cells have developed marvelously of which power conversion efficiency (PCE) achieved 26.1%, but the mechanical bending and environmental stability of flexible perovskite solar cells (F-PSCs) have remained major obstacles to their commercialization. In this study, the quality and crystallization of perovskite thin films were enhanced by adding agarose (AG). The interaction mechanism, PCE, mechanical bending and environmental stability of the assembled F-PSCs were investigated. It was found that the perovskite films modified by the optimal concentration of AG (3 mmol/L) exhibited denser and smoother morphology, higher crystallinity and absorbance, the lowest defect state density, and lower charge transfer resistance of 2191 Ω. Based on the optimal photoelectric properties, PCE increased from 15.17% to 17.30%. TiO2 nanoparticles (0.75 mmol/L) were further introduced to form a synergistic interaction with AG (3 mmol/L), which provided a rigid backbone structure, and thus enhanced the mechanical and environmental stability of perovskite layers. After 1500 cycles of bending (3 mm in radius), the AG/TiO2 co-modified F-PSCs maintained 84.73% of initial PCE, much higher than the blank device (9.32%). After 49 d in the air, the optimal F-PSCs still maintained 83.27% of initial PCE, superior than the blank device (62.21%). This work provides possibility for preparing highly efficient and stable F-PSCs.
Get Citation
Copy Citation Text
Tian CHEN, Yuan LUO, Liu ZHU, Xueyi GUO, Ying YANG.
Category:
Received: Nov. 16, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: YANG Ying (muyicaoyang@csu.edu.cn)