Ultrafast Science, Volume. 1, Issue 1, 9783514(2021)

Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale

Zhenyuan Lin and Minghui Hong*
Author Affiliations
  • Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576
  • show less
    References(151)

    [1] [1] P. van Assenbergh, E. Meinders, J. Geraedts, and D. Dodou, “Nanostructure and microstructure fabrication: from desired properties to suitable processes,” Small, vol. 14, no. 20, pp. 1–24, 2018

    [2] [2] E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, and Y. Gogotsi, “Energy storage: the future enabled by nanomaterials,” Science, vol. 366, no. 6468, article eaan8285, 2019

    [4] [4] H. G. Liu, W. Lin, and M. Hong, “Surface coloring by laser irradiation of solid substrates,” APL Photonics, vol. 4, no. 5, pp. 1–13, 2019

    [5] [5] D. J. Joe, S. Kim, J. H. Park, D. Y. Park, H. E. Lee, T. H. Im, I. Choi, R. S. Ruoff, and K. J. Lee, “Laser–material interactions for flexible applications,” Advanced Materials, vol. 29, no. 26, p. 1606586, 2017

    [6] [6] Y. D. Huang, J. Zhao, Z. Shu, Y. Zhu, J. Liu, W. Dong, X. Wang, Z. Lü, D. Zhang, J. Yuan, J. Chen, and Z. Zhao, “Ultrafast hole deformation revealed by molecular attosecond interferometry,” Ultrafast Science, vol. 2021, article 9837107, –12, 2021

    [7] [7] Z. C. Ma, Y. L. Zhang, B. Han, X. Y. Hu, C. H. Li, Q. D. Chen, and H. B. Sun, “Femtosecond laser programmed artificial musculoskeletal systems,” Nature Communications, vol. 11, no. 1, p. 4536, 2020

    [8] [8] Y. Zhou, L. W. Chen, Z. R. du, Y. Cao, F. P. Li, and M. H. Hong, “Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix,” Optical Materials Express, vol. 5, no. 7, p. 1606, 2015

    [11] [11] J. Li, T. Chen, T. Chen, and W. Lu, “Enhanced frictional performance in gradient nanostructures by strain delocalization,” International Journal of Mechanical Sciences, vol. 201, article 106458, 2021

    [14] [14] Y. Zhao, Y. Su, X. Hou, and M. Hong, “Directional sliding of water: biomimetic snake scale surfaces,” Opto-Electronic Advances, vol. 4, no. 4, pp. 210008–210013, 2021

    [15] [15] L. Ji, X. Lv, Y. Wu, Z. Lin, and Y. Jiang, “Hydrophobic light-trapping structures fabricated on silicon surfaces by picosecond laser texturing and chemical etching,” Journal of Photonics for Energy, vol. 5, no. 1, article 053094, 2015

    [17] [17] J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Science & Applications, vol. 3, no. 7, article e185, 2014

    [18] [18] F. Sima, and K. Sugioka, “Ultrafast laser manufacturing of nanofluidic systems,” Nano, vol. 10, no. 9, pp. 2389–2406, 2021

    [20] [20] H. Wang, Y. L. Zhang, D. D. Han, W. Wang, and H. B. Sun, “Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation,” PhotoniX, vol. 2, no. 1, pp. 1–13, 2021

    [21] [21] L. Yuan, S. Ding, and C. Wen, “Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review,” Bioactive Materials, vol. 4, no. 1, pp. 56–70, 2019

    [22] [22] A. A. Lahcen, S. Rauf, T. Beduk, C. Durmus, A. Aljedaibi, S. Timur, H. N. Alshareef, A. Amine, O. S. Wolfbeis, and K. N. Salama, “Electrochemical sensors and biosensors using laser-derived graphene: a comprehensive review,” Biosensors & Bioelectronics, vol. 168, article 112565, 2020

    [24] [24] T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser & Photonics Reviews, vol. 4, no. 1, pp. 123–143, 2010

    [26] [26] K. Sugioka, and Y. Cheng, “Femtosecond laser three-dimensional micro- and nanofabrication,” Applied Physics Reviews, vol. 1, no. 4, pp. 1–35, 2014

    [27] [27] A. Y. Vorobyev, and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser & Photonics Reviews, vol. 7, no. 3, pp. 385–407, 2013

    [28] [28] Y. C. Jia, S. Wang, and F. Chen, “Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application,” Opto-Electronic Advances, vol. 3, no. 10, article 190042, 2020

    [29] [29] Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Optics Letters, vol. 38, no. 2, pp. 187–189, 2013

    [32] [32] Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Applied Physics A: Materials Science & Processing, vol. 80, no. 3, pp. 461–465, 2005

    [33] [33] Z. Z. Li, L. Wang, H. Fan, Y. H. Yu, Q. D. Chen, S. Juodkazis, and H. B. Sun, “O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment,” Light: Science & Applications, vol. 9, no. 1, pp. 1–7, 2020

    [35] [35] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, no. 4736, pp. 493–494, 1960

    [36] [36] N. Bloembergen, “Laser-material interactions; fundamentals and applications,” AIP Conference Proceedings, vol. 288, no. 3, pp. 3–8, 1993

    [37] [37] G. X. Chen, M. H. Hong, T. S. Ong, H. M. Lam, W. Z. Chen, H. I. Elim, W. Ji, and T. C. Chong, “Carbon nanoparticles based nonlinear optical liquid,” Carbon, vol. 42, no. 12–13, pp. 2735–2737, 2004

    [38] [38] B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Applied Physics, vol. 63, no. 2, pp. 109–115, 1996

    [39] [39] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature, vol. 412, no. 6848, pp. 697–698, 2001

    [40] [40] Z. C. Ma, Y. L. Zhang, B. Han, Q. D. Chen, and H. B. Sun, “Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications,” Small Methods, vol. 2, no. 7, pp. 1–20, 2018

    [42] [42] W. Kaiser, and C. G. B. Garrett, “Two-photon excitation in CaF2: Eu2+,” Physical Review Letters, vol. 7, no. 6, pp. 229–231, 1961

    [43] [43] R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Optics Express, vol. 14, no. 12, pp. 5279–5284, 2006

    [44] [44] D. Gómez, and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels,” Applied Surface Science, vol. 253, no. 4, pp. 2230–2236, 2006

    [45] [45] C. Gaudiuso, H. Kämmer, F. Dreisow, A. Ancona, A. Tünnermann, and S. Nolte, “Ablation of silicon with bursts of femtosecond laser pulses,” in Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI, San Francisco, California, USA, March 2016, vol. 9740, no. 3, p. 974017,

    [47] [47] F. di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Optics Express, vol. 22, no. 10, pp. 12200–12210, 2014

    [48] [48] H. G. Liu, W. X. Lin, Z. Y. Lin, L. Ji, and M. Hong, “Self-organized periodic microholes array formation on aluminum surface via femtosecond laser ablation induced incubation effect,” Advanced Functional Materials, vol. 29, no. 42, p. 1903576, 2019

    [49] [49] V. Nathan, S. S. Mitra, and A. H. Guenther, “Review of multiphoton absorption in crystalline solids,” Journal of the Optical Society of America B: Optical Physics, vol. 2, no. 2, p. 294, 1985

    [51] [51] E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv für Mikroskopische Anatomie und Entwicklungsmechanik, vol. 9, no. 1, pp. 413–468, 1873

    [52] [52] D. van Labeke, D. Barchiesi, and F. Baida, “Optical characterization of nanosources used in scanning near-field optical microscopy,” Journal of the Optical Society of America. A, vol. 12, no. 4, p. 695, 1995

    [53] [53] Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensors and Actuators A, vol. 133, no. 2, pp. 311–316, 2007

    [54] [54] M. Hong, Z. Chen, M. Tang, L. Shi, and T. C. Chong, “Femtosecond laser irradiation for functional micro-/nanostructure fabrication,” in 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, Shanghai, China, August 2009, pp. 3–4

    [55] [55] D. Ghezzi, R. M. Vazquez, R. Osellame, F. Valtorta, A. Pedrocchi, G. Valle, R. Ramponi, G. Ferrigno, and G. Cerullo, “Femtosecond laser microfabrication of an integrated device for optical release and sensing of bioactive compounds,” Sensors, vol. 8, no. 10, pp. 6595–6604, 2008

    [56] [56] L. Kelemen, E. Lepera, B. Horváth, P. Ormos, R. Osellame, and R. Martínez Vázquez, “Direct writing of optical microresonators in a lab-on-a-chip for label-free biosensing,” Lab on a Chip, vol. 19, no. 11, pp. 1985–1990, 2019

    [57] [57] Z. Hou, Y. Sun, Q. Li, X. Fan, and R. Cheng, “Smart bio-gel optofluidic Mach–Zehnder interferometers multiphoton-lithographically customized with chemo-mechanical-opto transduction and bio-triggered degradation,” Lab on a Chip, vol. 20, no. 20, pp. 3815–3823, 2020

    [58] [58] S. Shaikh, D. Singh, M. Subramanian, S. Kedia, A. K. Singh, K. Singh, N. Gupta, and S. Sinha, “Femtosecond laser induced surface modification for prevention of bacterial adhesion on 45S5 bioactive glass,” Journal of Non-Crystalline Solids, vol. 482, pp. 63–72, 2017

    [59] [59] A. Daskalova, L. Angelova, A. Carvalho, A. Trifonov, C. Nathala, F. Monteiro, and I. Buchvarov, “Effect of surface modification by femtosecond laser on zirconia based ceramics for screening of cell-surface interaction,” Applied Surface Science, vol. 513, no. 9, article 145914, 2020

    [60] [60] Z. Wang, Z. du, J. K. Y. Chan, S. H. Teoh, E. S. Thian, and M. Hong, “Direct laser microperforation of bioresponsive surface-patterned films with through-hole arrays for vascular tissue-engineering application,” ACS Biomaterials Science & Engineering, vol. 1, no. 12, pp. 1239–1249, 2015

    [61] [61] J. N. Wang, Y. Q. Liu, Y. L. Zhang, J. Feng, H. Wang, Y. H. Yu, and H. B. Sun, “Wearable superhydrophobic elastomer skin with switchable wettability,” Advanced Functional Materials, vol. 28, no. 23, pp. 1–8, 2018

    [62] [62] A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents [invited],” Optical Materials Express, vol. 1, no. 5, p. 866, 2011

    [63] [63] A. Bellucci, M. Mastellone, M. Girolami, V. Serpente, A. Generosi, B. Paci, A. Mezzi, S. Kaciulis, R. Carducci, R. Polini, S. Orlando, A. Santagata, A. de Bonis, M. Meucci, L. Mercatelli, E. Sani, and D. M. Trucchi, “Nanocrystalline lanthanum boride thin films by femtosecond pulsed laser deposition as efficient emitters in hybrid thermionic-photovoltaic energy converters,” Applied Surface Science, vol. 513, no. 2, article 145829, 2020

    [64] [64] M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Applied Materials & Interfaces, vol. 8, no. 38, pp. 24989–24993, 2016

    [65] [65] D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Solar Energy Materials & Solar Cells, vol. 135, pp. 72–77, 2015

    [66] [66] C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Applied Physics Letters, vol. 84, no. 11, pp. 1850–1852, 2004

    [67] [67] R. Torres, V. Vervisch, M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, J. Ferreira, D. Barakel, S. Bastide, F. Torregrosa, H. Etienne, and L. Roux, “Femtosecond laser texturization for improvement of photovoltaic cells: black silicon,” Journal of Optoelectronics and Advanced Materials, vol. 12, no. 3, pp. 621–625, 2010

    [68] [68] R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Optical Materials Express, vol. 3, no. 10, p. 1674, 2013

    [70] [70] K. T. Paula, G. Gaál, G. F. B. Almeida, M. B. Andrade, M. H. M. Facure, D. S. Correa, A. Riul Jr., V. Rodrigues, and C. R. Mendonça, “Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications,” Optics and Laser Technology, vol. 101, pp. 74–79, 2018

    [71] [71] R. Zhang, C. Huang, J. Wang, H. Zhu, P. Yao, and S. Feng, “Micromachining of 4H-SiC using femtosecond laser,” Ceramics International, vol. 44, no. 15, pp. 17775–17783, 2018

    [72] [72] C. Wu, X. Fang, F. Liu, X. Guo, R. Maeda, and Z. Jiang, “High speed and low roughness micromachining of silicon carbide by plasma etching aided femtosecond laser processing,” Ceramics International, vol. 46, no. 11, pp. 17896–17902, 2020

    [73] [73] B. Ali, I. V. Litvinyuk, and M. Rybachuk, “Femtosecond laser micromachining of diamond: current research status, applications and challenges,” Carbon, vol. 179, pp. 209–226, 2021

    [74] [74] X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electronic Advances, vol. 2, no. 9, pp. 19002101–19002114, 2019

    [75] [75] Y. Hanada, K. Sugioka, I. Miyamoto, and K. Midorikawa, “Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study,” Applied Surface Science, vol. 248, no. 1–4, pp. 276–280, 2005

    [76] [76] M. H. Hong, K. Sugioka, D. J. Wu, K. J. Chew, Y. F. Lu, K. Midorikawa, and T. C. Chong, “Laser-induced plasma-assisted ablation and its applications,” in Third International Symposium on Laser Precision Microfabrication, Osaka, Japan, February 2003, vol. 4830, no. 2, p. 408,

    [77] [77] J. Zhang, K. Sugioka, and K. Midorikawa, “Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+: YAG laser,” Applied Physics A: Materials Science & Processing, vol. 67, no. 5, pp. 545–549, 1998

    [78] [78] H. G. Liu, W. Lin, and M. Hong, “Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications,” Light: Science & Applications, vol. 10, no. 1, p. 162, 2021

    [79] [79] M. H. Hong, K. Sugioka, Y. F. Lu, K. Midorikawa, and T. C. Chong, “Laser microfabrication of transparent hard materials and signal diagnostics,” Applied Surface Science, vol. 186, no. 1–4, pp. 556–561, 2002

    [80] [80] T. U. Rahman, Z. U. Rehman, S. Ullah, H. Qayyum, B. Shafique, R. Ali, U. Liaqat, A. H. Dogar, and A. Qayyum, “Laser-induced plasma-assisted ablation (LIPAA) of glass: effects of the laser fluence on plasma parameters and crater morphology,” Optics and Laser Technology, vol. 120, no. 3, article 105768, 2019

    [81] [81] U. Sarma, and S. N. Joshi, “Machining of micro-channels on polycarbonate by using laser-induced plasma assisted ablation (LIPAA),” Optics and Laser Technology, vol. 128, no. 4, article 106257, 2020

    [82] [82] H. Liu, Y. Li, W. Lin, and M. Hong, “High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation,” Optics and Laser Technology, vol. 132, no. 6, article 106472, 2020

    [83] [83] L. Xu, H. Liu, H. Zhou, and M. Hong, “One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection,” Talanta, vol. 228, article 122204, 2021

    [84] [84] C. Pan, K. Chen, B. Liu, L. Ren, J. Wang, Q. Hu, L. Liang, J. Zhou, and L. Jiang, “Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices,” Journal of Materials Processing Technology, vol. 240, pp. 314–323, 2017

    [85] [85] S. Xu, B. Liu, C. Pan, L. Ren, B. Tang, Q. Hu, and L. Jiang, “Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices,” Journal of Materials Processing Technology, vol. 247, no. 4, pp. 204–213, 2017

    [86] [86] Y. Li, H. Liu, and M. Hong, “High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation,” Optics Express, vol. 28, no. 5, pp. 6242–6250, 2020

    [87] [87] H. L. Liu, M. H. Hong, F. Chen, and P. Wu, “Visible waveguide lasers based on femtosecond laser inscribed cladding waveguides in Pr:YLF crystal,” in 2018 Conf. Lasers Electro-Optics, CLEO: Science and Innovations 2018, San Jose, California USA, May 2018, pp. 9–10

    [88] [88] H. L. Liu, J. R. Vazquez de Aldana, M. H. Hong, and F. Chen, “Femtosecond laser inscribed Y-branch waveguide in Nd: YAG crystal: fabrication and continuous-wave lasing,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 2, pp. 227–230, 2016

    [89] [89] H. Liu, S. Luo, B. Xu, H. Xu, Z. Cai, M. Hong, and P. Wu, “Femtosecond-laser micromachined Pr:YLF depressed cladding waveguide: Raman, fluorescence, and laser performance,” Optical Materials Express, vol. 7, no. 11, p. 3990, 2017

    [90] [90] L. Li, Z. Li, W. Nie, C. Romero, J. R. V. de Aldana, and F. Chen, “Femtosecond-laser-written s-curved waveguide in Nd:YAP crystal: fabrication and multi-gigahertz lasing,” Journal of Lightwave Technology, vol. 38, no. 24, pp. 6845–6852, 2020

    [91] [91] D. Ganin, K. Lapshin, A. Obidin, and S. Vartapetov, “Single-pulse perforation of thin transparent dielectrics by femtosecond lasers,” Applied Physics A: Materials Science & Processing, vol. 123, no. 5, pp. 1–7, 2017

    [92] [92] Y. Berg, Z. Kotler, and Y. Shacham-Diamand, “Holes generation in glass using large spot femtosecond laser pulses,” Journal of Micromechanics and Microengineering, vol. 28, no. 3, article 035009, 2018

    [93] [93] F. Baset, K. Popov, A. Villafranca, J. M. Guay, Z. al-Rekabi, A. E. Pelling, L. Ramunno, and R. Bhardwaj, “Femtosecond laser induced surface swelling in poly-methyl methacrylate,” Optics Express, vol. 21, no. 10, pp. 12527–12538, 2013

    [94] [94] F. Zhang, X. Dong, K. Yin, Y. Song, Y. Tian, C. Wang, and J.'. Duan, “Temperature effects on the geometry during the formation of micro-holes fabricated by femtosecond laser in PMMA,” Optics and Laser Technology, vol. 100, pp. 256–260, 2018

    [95] [95] Z. Wang, S. H. Teoh, M. Hong, F. Luo, E. Y. Teo, J. K. Y. Chan, and E. S. Thian, “Dual-microstructured porous, anisotropic film for biomimicking of endothelial basement membrane,” ACS Applied Materials & Interfaces, vol. 7, no. 24, pp. 13445–13456, 2015

    [96] [96] D. Zheren, C. Lianwei, W. Dacheng, W. Zuyong, L. C. Teck, H. Minghui, L. Yang, L. Xiong, L. Xiangang, K. Fang, D. Ming, C. Yu, and L. Fengping, “3D micro-concrete hybrid structures fabricated by femtosecond laser two-photon polymerization for biomedical and photonic applications,” in 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, China, March 2016, vol. 5, pp. 1108–1114

    [97] [97] Y. L. Zhang, Y. Tian, H. Wang, Z. C. Ma, D. D. Han, L. G. Niu, Q. D. Chen, and H. B. Sun, “Dual-3D femtosecond laser nanofabrication enables dynamic actuation,” ACS Nano, vol. 13, no. 4, pp. 4041–4048, 2019

    [98] [98] A. Michalek, S. Qi, A. Batal, P. Penchev, H. Dong, T. L. See, and S. Dimov, “Sub-micron structuring/texturing of diamond-like carbon-coated replication masters with a femtosecond laser,” Applied Physics A: Materials Science & Processing, vol. 126, no. 2, pp. 1–12, 2020

    [99] [99] T. Karkantonis, A. Gaddam, T. L. See, S. S. Joshi, and S. Dimov, “Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications,” Surface and Coatings Technology, vol. 399, no. 6, article 126166, 2020

    [100] [100] P. Umenne, and V. V. Srinivasu, “Femtosecond-laser fabrication of micron and sub-micron sized S-shaped constrictions on high T c superconducting YBa2Cu3O7−x thin films: ablation and lithography issues,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 8, pp. 5817–5826, 2017

    [102] [102] Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Applied Physics Letters, vol. 89, no. 4, article 041108, 2006

    [103] [103] C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” Journal of Materials Processing Technology, vol. 192-193, pp. 328–333, 2007

    [105] [105] A. Borowiec, and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Applied Physics Letters, vol. 82, no. 25, pp. 4462–4464, 2003

    [106] [106] J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 3, pp. 109–123, 2017

    [107] [107] J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Physical Review B, vol. 27, no. 2, pp. 1141–1154, 1983

    [108] [108] M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano, vol. 3, no. 12, pp. 4062–4070, 2009

    [109] [109] J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” Journal of Applied Physics, vol. 106, no. 10, article 104910, 2009

    [110] [110] Y. C. Guan, W. Zhou, Z. L. Li, H. Y. Zheng, G. C. Lim, and M. H. Hong, “Femtosecond laser-induced ripple structures on magnesium,” Applied Physics A: Materials Science & Processing, vol. 115, no. 1, pp. 13–18, 2014

    [111] [111] C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Optics Express, vol. 21, no. 10, pp. 12651–12656, 2013

    [112] [112] N. Livakas, E. Skoulas, and E. Stratakis, “Omnidirectional iridescence via cylindrically- polarized femtosecond laser processing,” Opto-Electronic Advances, vol. 3, no. 5, pp. 190035–190039, 2020

    [113] [113] S. A. Jalil, J. Yang, M. ElKabbash, C. Cong, and C. Guo, “Formation of controllable 1D and 2D periodic surface structures on cobalt by femtosecond double pulse laser irradiation,” Applied Physics Letters, vol. 115, no. 3, article 031601, 2019

    [114] [114] F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Applied Surface Science, vol. 470, no. 11, pp. 677–686, 2019

    [115] [115] W. Liu, L. Jiang, W. Han, J. Hu, X. Li, J. Huang, S. Zhan, and Y. Lu, “Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains,” Optics Express, vol. 27, no. 7, pp. 9782–9793, 2019

    [116] [116] H. J. Gerritsen, and M. E. Heller, “Thermally engraved gratings using a giant-pulse laser,” Journal of Applied Physics, vol. 38, no. 5, pp. 2054–2057, 1967

    [117] [117] P. Simon, and J. Ihlemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Applied Physics A: Materials Science & Processing, vol. 63, no. 5, pp. 505–508, 1996

    [118] [118] B. Li, L. Jiang, X. Li, Z. Lin, L. Huang, A. Wang, W. Han, Z. Wang, and Y. Lu, “Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping,” Adv. Opt. Mater., vol. 6, no. 24, pp. 1801021–1801027, 2018

    [119] [119] J. P. Spallas, R. D. Boyd, J. A. Britten, A. Fernandez, A. M. Hawryluk, M. D. Perry, and D. R. Kania, “Fabrication of sub-0.5 μm diameter cobalt dots on silicon substrates and photoresist pedestals on 50 cm×50 cm glass substrates using laser interference lithograph,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, no. 3, pp. 2005–2007, 1996

    [120] [120] M. H. Hong, C. H. Liu, F. Ma, Z. C. Chen, B. Luk'yanchuk, L. P. Shi, and T. C. Chong, “Large-area plasmonic structures fabricated by laser nanopatterning and their applications,” in Laser-based Micro- and Nanopackaging and Assembly III, San Jose, California, USA, February 2009, vol. 7202, no. 2, p. 72020K,

    [121] [121] M. N. Liu, L. Wang, Y. H. Yu, and A. W. Li, “Biomimetic construction of hierarchical structures via laser processing,” Optical Materials Express, vol. 7, no. 7, p. 2208, 2017

    [122] [122] L. Dong, Z. Zhang, R. Ding, L. Wang, M. Liu, Z. Weng, Z. Wang, and D. Li, “Controllable superhydrophobic surfaces with tunable adhesion fabricated by laser interference lithography,” Surface and Coatings Technology, vol. 372, no. 5, pp. 434–441, 2019

    [123] [123] E. Stankevičius, E. Daugnoraitė, and G. Račiukaitis, “Mechanism of pillars formation using four-beam interference lithography,” Optics and Lasers in Engineering, vol. 116, pp. 41–46, 2019

    [124] [124] J. Xu, Z. Wang, Z. Zhang, D. Wang, and Z. Weng, “Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography,” Journal of Applied Physics, vol. 115, no. 20, article 203101, 2014

    [125] [125] A. Wang, L. Jiang, X. Li, Z. Xu, L. Huang, K. Zhang, X. Ji, and Y. Lu, “Nanoscale material redistribution induced by spatially modulated femtosecond laser pulses for flexible high-efficiency surface patterning,” Optics Express, vol. 25, no. 25, pp. 31431–31442, 2017

    [126] [126] Y. Nakata, M. Yoshida, K. Osawa, and N. Miyanaga, “Fabricating a regular hexagonal lattice structure by interference pattern of six femtosecond laser beams,” Applied Surface Science, vol. 417, pp. 69–72, 2017

    [127] [127] A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Applied Physics Letters, vol. 82, no. 8, pp. 1146–1148, 2003

    [128] [128] I. Falcón Casas, and W. Kautek, “Subwavelength nanostructuring of gold films by apertureless scanning probe lithography assisted by a femtosecond fiber laser oscillator,” Nanomaterials, vol. 8, no. 7, p. 536, 2018

    [129] [129] W. J. Wang, R. Zhao, L. P. Shi, X. S. Miao, P. K. Tan, M. H. Hong, T. C. Chong, Y. H. Wu, and Y. Lin, “Nonvolatile phase change memory nanocell fabrication by femtosecond laser writing assisted with near-field optical microscopy,” Journal of Applied Physics, vol. 98, no. 12, article 124313, 2005

    [130] [130] B. Yan, L. Yue, J. Norman Monks, X. Yang, D. Xiong, C. Jiang, and Z. Wang, “Superlensing plano-convex-microsphere (PCM) lens for direct laser nano-marking and beyond,” Optics Letters, vol. 45, no. 5, pp. 1168–1171, 2020

    [132] [132] J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Optics Express, vol. 22, no. 26, pp. 32361–32370, 2014

    [133] [133] X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS),” Scientific Reports, vol. 6, no. 1, pp. 1–8, 2016

    [134] [134] V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Physical Review Letters, vol. 96, no. 5, pp. 1–4, 2006

    [135] [135] R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser & Photonics Reviews, vol. 2, no. 1–2, pp. 26–46, 2008

    [136] [136] Z. L. Wu, Y. N. Qi, X. J. Yin, X. Yang, C. M. Chen, J. Y. Yu, J. C. Yu, Y. M. Lin, F. Hui, P. L. Liu, Y. X. Liang, Y. Zhang, and M. S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers, vol. 11, no. 3, p. 553, 2019

    [137] [137] J. H. Soh, M. Wu, G. Gu, L. Chen, and M. Hong, “Temperature-controlled photonic nanojet via VO_2 coating,” Applied Optics, vol. 55, no. 14, pp. 3751–3756, 2016

    [138] [138] Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, Z. B. Wang, L. P. Shi, and T. C. Chong, “Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement,” Applied Physics Letters, vol. 88, no. 2, pp. 023110–023113, 2006

    [139] [139] Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Luk’yanchuk, C. S. Lim, and Z. B. Wang, “Nanopatterning mask fabrication by femtosecond laser irradiation,” Journal of Materials Processing Technology, vol. 192-193, pp. 212–217, 2007

    [140] [140] Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” Journal of Alloys and Compounds, vol. 449, no. 1–2, pp. 246–249, 2008

    [141] [141] M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Scientific Reports, vol. 6, no. 1, pp. 1–7, 2016

    [143] [143] Y. Zhou, and M. Hong, “Formation of a three-dimensional bottle beam via an engineered microsphere,” Photonics Res., vol. 9, no. 8, pp. 11121–11130, 2021

    [145] [145] Y. Liao, Y. Ju, L. Zhang, F. He, Q. Zhang, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing,” Optics Letters, vol. 35, no. 19, pp. 3225–3227, 2010

    [146] [146] Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab on a Chip, vol. 12, no. 4, pp. 746–749, 2012

    [148] [148] Z. Lin, L. Ji, and M. Hong, “Enhancement of femtosecond laser-induced surface ablation via temporal overlapping double-pulse irradiation,” Photonics Res., vol. 8, no. 3, p. 271, 2020

    [149] [149] R. Zhou, S. Lin, Y. Ding, H. Yang, K. Ong Yong Keng, and M. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electronic Advances, vol. 1, no. 8, pp. 18001401–18001406, 2018

    [150] [150] L. W. Chen, Y. Zhou, Y. Li, and M. Hong, “Microsphere enhanced optical imaging and patterning: from physics to applications,” Applied Physics Reviews, vol. 6, no. 2, article 021304, 2019

    Tools

    Get Citation

    Copy Citation Text

    Zhenyuan Lin, Minghui Hong. Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale[J]. Ultrafast Science, 2021, 1(1): 9783514

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 17, 2021

    Accepted: Nov. 10, 2021

    Published Online: Sep. 15, 2023

    The Author Email: Hong Minghui (elehmh@nus.edu.sg)

    DOI:10.34133/2021/9783514

    Topics