Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0328001(2024)

Nonlinearity Correction Technology for Light Source of Frequency-Modulated Continuous-Wave Light Detection and Ranging (Invited)

Yidong Tan†、* and Chenxiao Lin1、†
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • show less
    References(53)

    [1] Wang R R, Wang B N, Xiang M S et al. Simultaneous time-varying vibration and nonlinearity compensation for one-period triangular-FMCW lidar signal[J]. Remote Sensing, 13, 1731(2021).

    [2] Feneyrou P, Leviandier L, Minet J et al. Frequency-modulated multifunction lidar for anemometry, range finding, and velocimetry-2. Experimental results[J]. Applied Optics, 56, 9676-9685(2017).

    [3] Elbakary M I, Abdelghaffar H M, Afrifa K et al. Aerosol tracking using lidar-based atmospheric profiling and Bayesian estimation[J]. Optics & Laser Technology, 128, 106248(2020).

    [4] Urmson C, Anhalt J, Bagnell D et al. Autonomous driving in urban environments: boss and the urban challenge[J]. Journal of Field Robotics, 25, 425-466(2008).

    [5] Mitchell E W, Hoehler M S, Giorgetta F R et al. Coherent laser ranging for precision imaging through flames[J]. Optica, 5, 988-995(2018).

    [6] Agishev R, Gross B, Moshary F et al. Range-resolved pulsed and CWFM lidars: potential capabilities comparison[J]. Applied Physics B, 85, 149-162(2006).

    [7] Ula R K, Noguchi Y, Iiyama K. Three-dimensional object profiling using highly accurate FMCW optical ranging system[J]. Journal of Lightwave Technology, 37, 3826-3833(2019).

    [8] Martin A, Dodane D, Leviandier L et al. Photonic integrated circuit-based FMCW coherent LiDAR[J]. Journal of Lightwave Technology, 36, 4640-4645(2018).

    [9] Zhang H K, Wang L, Guo S G et al. Error correction method in measurement of high-speed targets with frequency-modulated continuous-wave lidar[J]. Chinese Journal of Lasers, 50, 1310003(2023).

    [10] Zhang Z W, Zhao Y J, Miao Y X et al. Terahertz nondestructive testing imaging technology based on linear frequency modulation mechanism[J]. Acta Optica Sinica, 42, 0411002(2022).

    [11] Dong Y, Xie W L, Feng Y X et al. Laser linear sweep frequency technique based on delay self-heterodyne optical phase locking and its application[J]. Acta Optica Sinica, 41, 1306003(2021).

    [12] Dieckmann A. FMCW-LIDAR with tunable twin-guide laser diode[J]. Electronics Letters, 30, 308-309(1994).

    [13] Zhao Q Y. Research on linearization chirp technique of DFB semiconductor laser[D](2015).

    [14] Karlsson C J, Olsson F A. Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance[J]. Applied Optics, 38, 3376-3386(1999).

    [15] Zhang X S, Pouls J, Wu M C. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR[J]. Optics Express, 27, 9965-9974(2019).

    [16] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 44, 7630-7634(2005).

    [17] Yao Z Y, Mauldin T, Hefferman G et al. Digitally integrated self-trained predistortion curve finder for passive sweep linearization of semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1502605(2019).

    [18] Cao X Y, Wu K, Li C et al. Highly efficient iteration algorithm for a linear frequency-sweep distributed feedback laser in frequency-modulated continuous wave lidar applications[J]. Journal of the Optical Society of America B, 38, D8-D14(2021).

    [19] Tang L W, Jia H X, Shao S et al. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity[J]. Photonics Research, 9, 1948-1957(2021).

    [20] Li P, Zhang Y T, Yao J Q. Rapid linear frequency swept frequency-modulated continuous wave laser source using iterative pre-distortion algorithm[J]. Remote Sensing, 14, 3455-3465(2022).

    [21] Cavedo F, Esmaili P, Norgia M. Self-mixing laser distance-sensor enhanced by multiple modulation waveforms[J]. Sensors, 22, 8456-8471(2022).

    [22] Na Q X, Xie Q J, Zhang N et al. Optical frequency shifted FMCW lidar system for unambiguous measurement of distance and velocity[J]. Optics and Lasers in Engineering, 164, 107523(2023).

    [23] Satyan N, Vasilyev A, Rakuljic G et al. Precise control of broadband frequency chirps using optoelectronic feedback[J]. Optics Express, 17, 15991-15999(2009).

    [24] Roos P A, Reibel R R, Berg T et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 34, 3692-3694(2009).

    [25] Satyan N, Vasilyev A, Rakuljic G et al. Phase-locking and coherent power combining of broadband linearly chirped optical waves[J]. Optics Express, 20, 25213-25227(2012).

    [26] Wu Y, Chen D J, Sun Y G et al. Research on optical chirp linearization technique of semiconductor lasers by an optoelectronic feedback loop[J]. Chinese Journal of Lasers, 40, 0902001(2013).

    [27] Qin J, Zhou Q, Xie W L et al. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop[J]. Optics Letters, 40, 4500-4503(2015).

    [28] Stefan K. Digital phase lock loop design for linearization of chirped laser[D](2018).

    [29] Huang X S. Nonlinear correction of photoelectric phase-locked semiconductor laser based on FPGA[D](2019).

    [30] Zhang J T. Study on frequency modulation nonlinear correction of light source for FMCW laser range finder[D](2022).

    [31] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 11, 1377-1384(1993).

    [32] Adler D C, Chen Y, Huber R et al. Three-dimensional endomicroscopy using optical coherence tomography[J]. Nature Photonics, 1, 709-716(2007).

    [33] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Optics Express, 16, 13139-13149(2008).

    [34] Shi G, Zhang F M, Qu X H et al. Absolute distance measurement by high resolution frequency modulated continuous wave laser[J]. Acta Physica Sinica, 63, 184209(2014).

    [35] Lu C, Liu G D, Liu B G et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration[J]. Optics Express, 24, 30215-30224(2016).

    [36] Pan H, Qu X H, Zhang F M. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance[J]. Optics Express, 26, 15186-15198(2018).

    [37] Wang Y F, Xu X, Dai Z R et al. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters[J]. PhotoniX, 3, 21(2022).

    [38] Lin C X, Wang Y F, Tan Y D. Laser feedback FMCW ranging system based on multiple-equal-phase-subdivision resampling[J]. Journal of Lightwave Technology, 41, 2846-2854(2023).

    [39] Wang Y F, Hua Z Y, Shi J C et al. Laser feedback frequency-modulated continuous-wave LiDAR and 3-D imaging[J]. IEEE Transactions on Instrumentation and Measurement, 72, 7002309(2023).

    [40] Baumann E, Giorgetta F R, Coddington I et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 38, 2026-2028(2013).

    [41] Baumann E, Giorgetta F R, Deschênes J D et al. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance[J]. Optics Express, 22, 24914-24928(2014).

    [42] Jia L H, Wang Y, Wang X Y et al. Nonlinear calibration of frequency modulated continuous wave LIDAR based on a microresonator soliton comb[J]. Optics Letters, 46, 1025-1028(2021).

    [43] Xie W L, Meng Y X, Feng Y X et al. Optical linear frequency sweep based on a mode-spacing swept comb and multi-loop phase-locking for FMCW interferometry[J]. Optics Express, 29, 604-614(2021).

    [44] Yang J, Xie W L, Wang T et al. Enhanced frequency-modulated continuous-wave generation by injection-locking period-one oscillation in a semiconductor laser with an intensity modulated comb[J]. Optics Express, 30, 14886-14896(2022).

    [45] He B B, Zhang C B, Yang J C et al. Massively parallel FMCW lidar with cm range resolution using an electro-optic frequency comb[J]. Optics Letters, 48, 3621-3624(2023).

    [46] Pierrottet D F, Amzajerdian F, Petway L et al. Linear FMCW laser radar for precision range and vector velocity measurements[J]. MRS Online Proceedings Library, 1076, 10760406(2008).

    [47] Gao S, Hui R. Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection[J]. Optics Letters, 37, 2022-2024(2012).

    [48] Gao S, O’Sullivan M, Hui R Q. Complex-optical-field lidar system for range and vector velocity measurement[J]. Optics Express, 20, 25867-25875(2012).

    [49] Lü Y K, Yang T X, Lu Z Y et al. External modulation method for generating accurate linear optical FMCW[J]. IEEE Photonics Technology Letters, 29, 1560-1563(2017).

    [50] Xu Z Y, Tang L Z, Zhang H X et al. Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar[J]. IEEE Photonics Technology Letters, 29, 2254-2257(2017).

    [51] Lu Z Y, Yang T X, Li Z Y et al. Broadband linearly chirped light source with narrow linewidth based on external modulation[J]. Optics Letters, 43, 4144-4147(2018).

    [52] Fang F P, Hu H, Yan P P et al. Composite optical phase locking technology of chirp synthetic aperture lidar[J]. Optics Communications, 509, 127793(2022).

    [53] Wang X C, Cao F T, Ma C et al. Dual-band coherent microwave photonic radar using linear frequency modulated signals with arbitrary chirp rates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 7700609(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yidong Tan, Chenxiao Lin. Nonlinearity Correction Technology for Light Source of Frequency-Modulated Continuous-Wave Light Detection and Ranging (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0328001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 5, 2023

    Accepted: Dec. 3, 2023

    Published Online: Mar. 7, 2024

    The Author Email: Tan Yidong (tanyd@mail.tsinghua.edu.cn)

    DOI:10.3788/LOP232667

    Topics