Journal of Terahertz Science and Electronic Information Technology , Volume. 19, Issue 6, 973(2021)

Tunable broadband terahertz absorber based on graphene metamaterial

HU Dan1,*... FU Maixia2 and ZHU Qiaofen3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(26)

    [1] [1] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402-1-6.

    [2] [2] HU F R, QIAN Y X, LI Z, et al. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J]. Journal of Optics, 2013, 15(5):055101-1-7.

    [3] [3] SHREKENHAMER D, CHEN W C, PADILLA W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 2013, 110(17):177403-1-5.

    [4] [4] SEREN H R, KEISER G R, CAO L Y, et al. Optically modulated multiband terahertz perfect absorber[J]. Advanced Optical Materials, 2014, 2(12):1221-1226.

    [5] [5] LEI L, LOU F, TAO K Y, et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photonics Research, 2019, 7(7):734-741.

    [6] [6] ZHAO J, CHENG Q, CHEN J, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 2013, 15(4):043049-1-11.

    [7] [7] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.

    [8] [8] GUSYNINV P, SHARAPOV S G, CARBOTTE J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 2006, 19(2):026222-1-28.

    [9] [9] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics Express, 2013, 21(7):9144-9155.

    [10] [10] ZHANG Y P, LI T T, CHEN Q, et al. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies[J]. Scientific Reports, 2015, 5(1):18463-1-8.

    [11] [11] ZHANG Y, FENG Y J, ZHU B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 2014, 22(19):22743-22752.

    [13] [13] MOU N L, SUN S L, DONG H X, et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J]. Optics Express, 2018, 26(9):11728-11736.

    [14] [14] XIAO B G, GU M Y, XIAO S S. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays[J]. Applied Optics, 2017, 56(19):5458-5462.

    [15] [15] QI L M, LIU C, SHAH S M A. A broad dual-band switchable graphene-based terahertz metamaterial absorber[J]. Carbon, 2019, 153:179-188.

    [16] [16] ZHOU Q H, ZHA S, LIU P G. Graphene based controllable broadband terahertz metamaterial absorber with transmission band[J]. Materials, 2018, 11(12):2409-1-8.

    [17] [17] YE L F, CHEN Y, ZHOU J L, et al. Actively tunable broadband terahertz absorption using periodically square-patterned graphene[J]. Applied Physics Express, 2018, 11(10):102201-1-4.

    [18] [18] CAI Y J, XU K D. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure[J]. Optics Express, 2018, 26(24):31693-31705.

    [19] [19] ZENG F, YE L, LI L, et al. Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials[J]. Optics Express, 2019, 27(23):33826-33839.

    [20] [20] HANSON G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6):064302-1-18.

    [21] [21] DING F, CUI Y, GE X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506-1-4.

    [22] [22] SMITH D R, SCHULTZ S, MARKO? P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2002, 65(19):195104-1-5.

    [23] [23] SMITH D R, VIER D C, KOSCHNY T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 2005, 71(3):036617-1-11.

    [24] [24] YE Y Q, JIN Y, HE S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2010, 27(3):498-504.

    [25] [25] LE K Q, BAI J. Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance[J]. Journal of the Optical Society of America B, 2015, 32(4):595-600.

    [26] [26] WANG B X, WANG L L, WANG G Z, et al. A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber[J]. Applied Physics Express, 2014, 7(8):082601-1-4.

    [27] [27] YE L, CHEN X E, ZHU C H, et al. Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide[J]. Optics Express, 2020, 28(23) :33948-33958.

    Tools

    Get Citation

    Copy Citation Text

    HU Dan, FU Maixia, ZHU Qiaofen. Tunable broadband terahertz absorber based on graphene metamaterial[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(6): 973

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 14, 2021

    Accepted: --

    Published Online: Feb. 25, 2022

    The Author Email: Dan HU (tylzhd@163.com.)

    DOI:10.11805/tkyda2021248

    Topics