Journal of Synthetic Crystals, Volume. 49, Issue 11, 2079(2020)

Research Progress of AlGaN Based Deep Ultraviolet Light Emitting Diodes

WU Feng, DAI Jiangnan, and CHEN Changqing
Author Affiliations
  • [in Chinese]
  • show less
    References(51)

    [1] [1] Kneissl M, Rass J. ⅢNitride ultraviolet emitters[M]. New York: Springer, 2016.

    [2] [2] Kneissl M, Seong T, Han J, et al. The emergence and prospects of deepultraviolet lightemitting diode technologies[J]. Nature photonics, 2019, 13(4): 233244.

    [3] [3] Hirayama H, Fujikawa S, Norimatsu J, et al. Fabrication of a low threading dislocation density ELOAlN template for application to deepUV LEDs[J]. Physica status solidi. C, 2009, 6(S2): S356S359.

    [4] [4] Jmerik V N, Lutsenko E V, Ivanov S V. Plasmaassisted molecular beam epitaxy of AlGaN heterostructures for deepultraviolet optically pumped lasers[J]. Physica status solidi. A, Applications and materials science, 2013, 210(3): 439450.

    [5] [5] Long H L, Dai J N, Zhang Y, et al. High quality 10.6 μm AlN grown on pyramidal patterned sapphire substrate by MOCVD[J]. Applied physics letters, 2019, 114: 042101.

    [6] [6] Zeimer U, Kueller V, Knauer A, et al. High quality AlGaN grown on ELO AlN/sapphire templates[J]. Journal of crystal growth, 2013, 377: 3236.

    [7] [7] Sato H, Sugahara T, Naoi Y, et al. Compositional inhomogeneity of InGaN grown on sapphire and bulk GaN substrates by metalorganic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 1998, 37(Part 1, No. 4A): 20132015.

    [8] [8] Sun H D, Mitra S, Subedi r C, et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate[J]. Advanced Functional Materials, 2019, 29: 1905445.

    [9] [9] Islam S, Lee K, Verma J, et al. MBEgrown 232270 nm deepUV LEDs using monolayer thin binary GaN/AlN quantum heterostructures[J]. Applied physics letters, 2017, 110: 041108.

    [10] [10] Liu C, Ooi Y K, Islam S M, et al. Physics and polarization characteristics of 298 nm AlNdeltaGaN quantum well ultraviolet lightemitting diodes[J]. Applied physics letters, 2017, 110(7): 71103.

    [11] [11] Wu F, Sun H D, Ajia I A, et al. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at~350 nm via step quantum well structure design[J]. Journal of Physics DApplied Physics, 2017, 50: 245101.

    [12] [12] Yu H B, Chen Q, Ren Z, et al. Enhanced performance of an AlGaNbased deepultraviolet LED having graded quantum well structure[J]. IEEE photonics journal, 2019, 11(4): 16.

    [13] [13] Tian K, Chen Q, Chu C, et al. Investigations on AlGaNbased deepultraviolet lightemitting diodes with Sidoped quantum barriers of different doping concentrations[J]. Physica status solidi. PSSRRL. Rapid research letters, 2018, 12(1): 1700346.

    [14] [14] Mehnke F, Wernicke T, Pingel H, et al. Highly conductive nAlxGa1-xN layers with aluminum mole fractions above 80%[J]. Applied physics letters, 2013, 103(21): 212109.

    [15] [15] Zhu S, Yan J, Zhang Y, et al. The effect of deltadoping on Sidoped Al rich nAlGaN on AlN template grown by MOCVD[J]. Physica status solidi. C, 2014, 11(34): 466468.

    [16] [16] Cantu P, Keller S, Mishra U, et al. Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35 N films[J]. Applied physics letters, 2003, 82: 3683.

    [17] [17] Allerman A A, Crawford M H, Miller M A, et al. Growth and characterization of Mgdoped AlGaNAlN shortperiod superlattices for deepUV optoelectronic devices[J]. Journal of crystal growth, 2010, 312(6): 756761.

    [18] [18] Zheng T C, Lin W, Liu R, et al. Improved ptype conductivity in Alrich AlGaN using multidimensional Mgdoped superlattices[J]. Scientific reports, 2016, 6(1): 21897.

    [19] [19] Ebata K, Nishinaka J, Taniyasu Y, et al. High hole concentration in Mgdoped AlN/AlGaN superlattices with high Al content[J]. Japanese Journal of Applied Physics, 2018, 57(4S): 4.

    [20] [20] Chen Y, Wu H, Han E, et al. High hole concentration in ptype AlGaN by indiumsurfactantassisted Mgdelta doping[J]. Applied physics letters, 2015, 106(16): 162102.

    [21] [21] Zhang J, Tian W, Wu F, et al. The advantages of AlGaNbased UVLEDs inserted with a pAlGaN layer between the EBL and active region[J]. IEEE photonics journal, 2013, 5: 1600310.

    [22] [22] Zhang Z, Kou J, Chen S H, et al. Increasing the hole energy by grading the alloy composition of the ptype electron blocking layer for very highperformance deep ultraviolet lightemitting diodes[J]. Photonics research (Washington, DC), 2019, 7(4): B1.

    [23] [23] Tian W, Feng Z H, Liu B, et al. Numerical study of the advantages of ultraviolet lightemitting diodes with a single step quantum well as the electron blocking layer[J]. Optical and quantum electronics, 2012, 45(5): 381387.

    [24] [24] Hirayama H, Tsukada Y, Maeda T, et al. Marked enhancement in the efficiency of deepultraviolet AlGaN lightemitting diodes by using a multiquantumbarrier electron blocking layer[J]. Applied Physics Express, 2010, 3(3): 31002.

    [25] [25] Lang J, Xu F J, Ge W K, et al. Greatly enhanced performance of AlGaNbased deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer[J]. Optics express, 2019, 27(20): A1458A1466.

    [26] [26] Pandey A, Shin W J, Liu X, et al. Effect of electron blocking layer on the efficiency of AlGaN midultraviolet light emitting diodes[J]. Optics express, 2019, 27(12): A738A745.

    [27] [27] Yu H, Ren Z, Zhang H, et al. Advantages of AlGaNbased deepultraviolet lightemitting diodes with an Alcomposition graded quantum barrier[J]. Optics express, 2019, 27(20): A1544A1553.

    [28] [28] Xing C, Yu H, Ren Z, et al. Performance improvement of AlGaNbased deep ultraviolet lightemitting diodes with steplike quantum barriers[J]. IEEE journal of quantum electronics, 2019, 56(1): 16.

    [29] [29] Liu Z, Yu H, Ren Z, et al. Polarizationengineered AlGaN last quantum barrier for efficient deepultraviolet lightemitting diodes[J]. Semiconductor Science and Technology, 2020, 35: 075021.

    [30] [30] Chen Q, Zhang J, Gao Y, et al. Improved the AlGaNbased ultraviolet LEDs performance with superlattice structure last barrier[J]. IEEE photonics journal, 2018, 10(4): 17.

    [31] [31] Hu J H, Zhang J, Zhang Y, et al. Enhanced performance of AlGaNbased deep ultraviolet lightemitting diodes with chirped superlattice electron deceleration layer[J]. Nanoscale research letters, 2019, 14(1): 18.

    [32] [32] Takano T, Mino T, Sakai J, et al. Deepultraviolet lightemitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving lightextraction efficiency[J]. Applied Physics Express, 2017, 10: 031002.

    [33] [33] Khan M A, Maeda N, Jo M, et al. 13 mW operation of a 295310 nm AlGaN UVB LED with a pAlGaN transparent contact layer for real world applications[J]. Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, 7(1): 143152.

    [34] [34] Gao Y, Chen Q, Zhang S, et al. Enhanced light extraction efficiency of AlGaNbased deep ultraviolet lightemitting diodes by incorporating highreflective ntype electrode made of Cr/Al[J]. IEEE transactions on electron devices, 2019, 66: 2992.

    [35] [35] Zhang S, Liu Y, Zhang J, et al. Optical polarization characteristics and light extraction behavior of deepultraviolet LED flipchip with fullspatial omnidirectional reflector system[J]. Optics express, 2019, 27(20): A1601A1614.

    [36] [36] Kashima Y, Maeda N, Matsuura E, et al. High external quantum efficiency (10%) AlGaNbased deepultraviolet lightemitting diodes achieved by using highly reflective photonic crystal on pAlGaN contact layer[J]. Applied Physics Express, 2017, 11: 012101.

    [37] [37] Nakashima T, Takeda K, Shinzato H, et al. Combination of indiumtin oxide and SiO2/AlN dielectric multilayer reflective electrodes for ultravioletlightemitting diodes[J]. Jpn J Appl Phys, 2013, 52(8): 7 J8 J.

    [38] [38] Lee T H, Park T H, Shin H W, et al. Smart widebandgap omnidirectional reflector as an effective holeinjection electrode for deepUV lightemitting diodes[J]. Advanced optical materials, 2019, 8(2): 1901430.

    [39] [39] Khizar M, Fan Z Y, Kim K H, et al. Nitride deepultraviolet lightemitting diodes with microlens array[J]. Applied physics letters, 2005, 86(17): 173504.

    [40] [40] Pernot C, Kim M, Fukahori S, et al. Improved efficiency of 255280 nm AlGaNbased lightemitting diodes[J]. Applied physics express, 2010, 3(6): 61004.

    [41] [41] Inoue S, Tamari N, Taniguchi M. 150 mW deepultraviolet lightemitting diodes with largearea AlN nanophotonic lightextraction structure emitting at 265 nm[J]. Applied physics letters, 2017, 110(14): 141106.

    [42] [42] Liang R L, Dai J N, Xu L L, et al. High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays[J]. IEEE transactions on electron devices, 2018, 65: 2498.

    [43] [43] Ryu H, Choi I, Choi H, et al. Investigation of light extraction efficiency in AlGaN deepultraviolet lightemitting diodes[J]. Applied Physics Express, 2013, 6(6): 62101.

    [44] [44] Wang S, Dai J N, Hu J H, et al. Ultrahigh degree of optical polarization above 80% in AlGaNbased deepultraviolet LED with motheye microstructure[J]. ACS photonics, 2018, 5(9): 35343540.

    [45] [45] Wierer J J, Allerman A A, Montao I, et al. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet lightemitting diodes, 2014, 105(6): 61106.

    [46] [46] Lee J W, Kim D Y, Park J H, et al. An elegant route to overcome fundamentallylimited light extraction in AlGaN deepultraviolet lightemitting diodes: Preferential outcoupling of strong inplane emission[J]. Scientific reports, 2016, 6(1): 22537.

    [47] [47] Chen Q, Zhang H, Dai J N, et al. Enhanced the optical power of AlGaNbased deep ultraviolet lightemitting diode by optimizing mesa sidewall angle[J]. IEEE photonics journal, 2018, 10(4): 17.

    [48] [48] Long H L, Wang S, Dai J N, et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD[J]. Optics express, 2018, 26(2): 680686.

    [49] [49] Zhang S, Wu F, Wang S, et al. Enhanced wallplug efficiency in AlGaNbased deepultraviolet LED via a novel honeycomb holeshaped structure[J]. IEEE transactions on electron devices, 2019, 66(7): 29973002.

    [50] [50] Chen Q, Dai J, Li X, et al. Enhanced optical performance of AlGaNbased deep ultraviolet lightemitting diodes by electrode patterns design[J]. IEEE Electron Device Letters, 2019, 40: 1925.

    [51] [51] Liang R L, Zhang J, Wang S, et al. Investigation on thermal characterization of eutectic flipchip UVLEDs with different bonding voidage[J]. IEEE transactions on electron devices, 2017, 64(3): 11741179.

    CLP Journals

    [1] LIANG Xiao, LI Siqi, WANG Zhongwei, SHAO Pengfei, CHEN Songlin, TAO Tao, XIE Zili, LIU Bin, CHEN Dunjun, ZHENG Youdou, ZHANG Rong, WANG Ke. Study on Molecular Beam Epitaxy of High Al Content AlGaN Thin Films and Si Doping[J]. Journal of Synthetic Crystals, 2023, 52(5): 783

    [2] ZHANG Aoxiang, WANG Yao, WANG Mengzhen, WEI Shiqin, WANG Fang, LIU Yuhuai. Performance optimization of AlGaN-based deep ultraviolet laser diode with M-shaped hole barrier structure[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 583

    Tools

    Get Citation

    Copy Citation Text

    WU Feng, DAI Jiangnan, CHEN Changqing. Research Progress of AlGaN Based Deep Ultraviolet Light Emitting Diodes[J]. Journal of Synthetic Crystals, 2020, 49(11): 2079

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics