Journal of Synthetic Crystals, Volume. 49, Issue 11, 2079(2020)
Research Progress of AlGaN Based Deep Ultraviolet Light Emitting Diodes
[1] [1] Kneissl M, Rass J. ⅢNitride ultraviolet emitters[M]. New York: Springer, 2016.
[2] [2] Kneissl M, Seong T, Han J, et al. The emergence and prospects of deepultraviolet lightemitting diode technologies[J]. Nature photonics, 2019, 13(4): 233244.
[3] [3] Hirayama H, Fujikawa S, Norimatsu J, et al. Fabrication of a low threading dislocation density ELOAlN template for application to deepUV LEDs[J]. Physica status solidi. C, 2009, 6(S2): S356S359.
[4] [4] Jmerik V N, Lutsenko E V, Ivanov S V. Plasmaassisted molecular beam epitaxy of AlGaN heterostructures for deepultraviolet optically pumped lasers[J]. Physica status solidi. A, Applications and materials science, 2013, 210(3): 439450.
[5] [5] Long H L, Dai J N, Zhang Y, et al. High quality 10.6 μm AlN grown on pyramidal patterned sapphire substrate by MOCVD[J]. Applied physics letters, 2019, 114: 042101.
[6] [6] Zeimer U, Kueller V, Knauer A, et al. High quality AlGaN grown on ELO AlN/sapphire templates[J]. Journal of crystal growth, 2013, 377: 3236.
[7] [7] Sato H, Sugahara T, Naoi Y, et al. Compositional inhomogeneity of InGaN grown on sapphire and bulk GaN substrates by metalorganic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 1998, 37(Part 1, No. 4A): 20132015.
[8] [8] Sun H D, Mitra S, Subedi r C, et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate[J]. Advanced Functional Materials, 2019, 29: 1905445.
[9] [9] Islam S, Lee K, Verma J, et al. MBEgrown 232270 nm deepUV LEDs using monolayer thin binary GaN/AlN quantum heterostructures[J]. Applied physics letters, 2017, 110: 041108.
[10] [10] Liu C, Ooi Y K, Islam S M, et al. Physics and polarization characteristics of 298 nm AlNdeltaGaN quantum well ultraviolet lightemitting diodes[J]. Applied physics letters, 2017, 110(7): 71103.
[11] [11] Wu F, Sun H D, Ajia I A, et al. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at~350 nm via step quantum well structure design[J]. Journal of Physics DApplied Physics, 2017, 50: 245101.
[12] [12] Yu H B, Chen Q, Ren Z, et al. Enhanced performance of an AlGaNbased deepultraviolet LED having graded quantum well structure[J]. IEEE photonics journal, 2019, 11(4): 16.
[13] [13] Tian K, Chen Q, Chu C, et al. Investigations on AlGaNbased deepultraviolet lightemitting diodes with Sidoped quantum barriers of different doping concentrations[J]. Physica status solidi. PSSRRL. Rapid research letters, 2018, 12(1): 1700346.
[14] [14] Mehnke F, Wernicke T, Pingel H, et al. Highly conductive nAlxGa1-xN layers with aluminum mole fractions above 80%[J]. Applied physics letters, 2013, 103(21): 212109.
[15] [15] Zhu S, Yan J, Zhang Y, et al. The effect of deltadoping on Sidoped Al rich nAlGaN on AlN template grown by MOCVD[J]. Physica status solidi. C, 2014, 11(34): 466468.
[16] [16] Cantu P, Keller S, Mishra U, et al. Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35 N films[J]. Applied physics letters, 2003, 82: 3683.
[17] [17] Allerman A A, Crawford M H, Miller M A, et al. Growth and characterization of Mgdoped AlGaNAlN shortperiod superlattices for deepUV optoelectronic devices[J]. Journal of crystal growth, 2010, 312(6): 756761.
[18] [18] Zheng T C, Lin W, Liu R, et al. Improved ptype conductivity in Alrich AlGaN using multidimensional Mgdoped superlattices[J]. Scientific reports, 2016, 6(1): 21897.
[19] [19] Ebata K, Nishinaka J, Taniyasu Y, et al. High hole concentration in Mgdoped AlN/AlGaN superlattices with high Al content[J]. Japanese Journal of Applied Physics, 2018, 57(4S): 4.
[20] [20] Chen Y, Wu H, Han E, et al. High hole concentration in ptype AlGaN by indiumsurfactantassisted Mgdelta doping[J]. Applied physics letters, 2015, 106(16): 162102.
[21] [21] Zhang J, Tian W, Wu F, et al. The advantages of AlGaNbased UVLEDs inserted with a pAlGaN layer between the EBL and active region[J]. IEEE photonics journal, 2013, 5: 1600310.
[22] [22] Zhang Z, Kou J, Chen S H, et al. Increasing the hole energy by grading the alloy composition of the ptype electron blocking layer for very highperformance deep ultraviolet lightemitting diodes[J]. Photonics research (Washington, DC), 2019, 7(4): B1.
[23] [23] Tian W, Feng Z H, Liu B, et al. Numerical study of the advantages of ultraviolet lightemitting diodes with a single step quantum well as the electron blocking layer[J]. Optical and quantum electronics, 2012, 45(5): 381387.
[24] [24] Hirayama H, Tsukada Y, Maeda T, et al. Marked enhancement in the efficiency of deepultraviolet AlGaN lightemitting diodes by using a multiquantumbarrier electron blocking layer[J]. Applied Physics Express, 2010, 3(3): 31002.
[25] [25] Lang J, Xu F J, Ge W K, et al. Greatly enhanced performance of AlGaNbased deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer[J]. Optics express, 2019, 27(20): A1458A1466.
[26] [26] Pandey A, Shin W J, Liu X, et al. Effect of electron blocking layer on the efficiency of AlGaN midultraviolet light emitting diodes[J]. Optics express, 2019, 27(12): A738A745.
[27] [27] Yu H, Ren Z, Zhang H, et al. Advantages of AlGaNbased deepultraviolet lightemitting diodes with an Alcomposition graded quantum barrier[J]. Optics express, 2019, 27(20): A1544A1553.
[28] [28] Xing C, Yu H, Ren Z, et al. Performance improvement of AlGaNbased deep ultraviolet lightemitting diodes with steplike quantum barriers[J]. IEEE journal of quantum electronics, 2019, 56(1): 16.
[29] [29] Liu Z, Yu H, Ren Z, et al. Polarizationengineered AlGaN last quantum barrier for efficient deepultraviolet lightemitting diodes[J]. Semiconductor Science and Technology, 2020, 35: 075021.
[30] [30] Chen Q, Zhang J, Gao Y, et al. Improved the AlGaNbased ultraviolet LEDs performance with superlattice structure last barrier[J]. IEEE photonics journal, 2018, 10(4): 17.
[31] [31] Hu J H, Zhang J, Zhang Y, et al. Enhanced performance of AlGaNbased deep ultraviolet lightemitting diodes with chirped superlattice electron deceleration layer[J]. Nanoscale research letters, 2019, 14(1): 18.
[32] [32] Takano T, Mino T, Sakai J, et al. Deepultraviolet lightemitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving lightextraction efficiency[J]. Applied Physics Express, 2017, 10: 031002.
[33] [33] Khan M A, Maeda N, Jo M, et al. 13 mW operation of a 295310 nm AlGaN UVB LED with a pAlGaN transparent contact layer for real world applications[J]. Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, 7(1): 143152.
[34] [34] Gao Y, Chen Q, Zhang S, et al. Enhanced light extraction efficiency of AlGaNbased deep ultraviolet lightemitting diodes by incorporating highreflective ntype electrode made of Cr/Al[J]. IEEE transactions on electron devices, 2019, 66: 2992.
[35] [35] Zhang S, Liu Y, Zhang J, et al. Optical polarization characteristics and light extraction behavior of deepultraviolet LED flipchip with fullspatial omnidirectional reflector system[J]. Optics express, 2019, 27(20): A1601A1614.
[36] [36] Kashima Y, Maeda N, Matsuura E, et al. High external quantum efficiency (10%) AlGaNbased deepultraviolet lightemitting diodes achieved by using highly reflective photonic crystal on pAlGaN contact layer[J]. Applied Physics Express, 2017, 11: 012101.
[37] [37] Nakashima T, Takeda K, Shinzato H, et al. Combination of indiumtin oxide and SiO2/AlN dielectric multilayer reflective electrodes for ultravioletlightemitting diodes[J]. Jpn J Appl Phys, 2013, 52(8): 7 J8 J.
[38] [38] Lee T H, Park T H, Shin H W, et al. Smart widebandgap omnidirectional reflector as an effective holeinjection electrode for deepUV lightemitting diodes[J]. Advanced optical materials, 2019, 8(2): 1901430.
[39] [39] Khizar M, Fan Z Y, Kim K H, et al. Nitride deepultraviolet lightemitting diodes with microlens array[J]. Applied physics letters, 2005, 86(17): 173504.
[40] [40] Pernot C, Kim M, Fukahori S, et al. Improved efficiency of 255280 nm AlGaNbased lightemitting diodes[J]. Applied physics express, 2010, 3(6): 61004.
[41] [41] Inoue S, Tamari N, Taniguchi M. 150 mW deepultraviolet lightemitting diodes with largearea AlN nanophotonic lightextraction structure emitting at 265 nm[J]. Applied physics letters, 2017, 110(14): 141106.
[42] [42] Liang R L, Dai J N, Xu L L, et al. High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays[J]. IEEE transactions on electron devices, 2018, 65: 2498.
[43] [43] Ryu H, Choi I, Choi H, et al. Investigation of light extraction efficiency in AlGaN deepultraviolet lightemitting diodes[J]. Applied Physics Express, 2013, 6(6): 62101.
[44] [44] Wang S, Dai J N, Hu J H, et al. Ultrahigh degree of optical polarization above 80% in AlGaNbased deepultraviolet LED with motheye microstructure[J]. ACS photonics, 2018, 5(9): 35343540.
[45] [45] Wierer J J, Allerman A A, Montao I, et al. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet lightemitting diodes, 2014, 105(6): 61106.
[46] [46] Lee J W, Kim D Y, Park J H, et al. An elegant route to overcome fundamentallylimited light extraction in AlGaN deepultraviolet lightemitting diodes: Preferential outcoupling of strong inplane emission[J]. Scientific reports, 2016, 6(1): 22537.
[47] [47] Chen Q, Zhang H, Dai J N, et al. Enhanced the optical power of AlGaNbased deep ultraviolet lightemitting diode by optimizing mesa sidewall angle[J]. IEEE photonics journal, 2018, 10(4): 17.
[48] [48] Long H L, Wang S, Dai J N, et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD[J]. Optics express, 2018, 26(2): 680686.
[49] [49] Zhang S, Wu F, Wang S, et al. Enhanced wallplug efficiency in AlGaNbased deepultraviolet LED via a novel honeycomb holeshaped structure[J]. IEEE transactions on electron devices, 2019, 66(7): 29973002.
[50] [50] Chen Q, Dai J, Li X, et al. Enhanced optical performance of AlGaNbased deep ultraviolet lightemitting diodes by electrode patterns design[J]. IEEE Electron Device Letters, 2019, 40: 1925.
[51] [51] Liang R L, Zhang J, Wang S, et al. Investigation on thermal characterization of eutectic flipchip UVLEDs with different bonding voidage[J]. IEEE transactions on electron devices, 2017, 64(3): 11741179.
Get Citation
Copy Citation Text
WU Feng, DAI Jiangnan, CHEN Changqing. Research Progress of AlGaN Based Deep Ultraviolet Light Emitting Diodes[J]. Journal of Synthetic Crystals, 2020, 49(11): 2079
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email:
CSTR:32186.14.