Electronics Optics & Control, Volume. 30, Issue 3, 78(2023)
Research Progress of SLAM Technology
[3] [3] DURRANT-WHYTE H, BAILEY T.Simultaneous localization and mapping:part I[J].IEEE Robotics & Automation Magazine, 2006, 13(2):99-110.
[4] [4] BAILEY T, DURRANT-WHYTE H.Simultaneous localization and mapping(SLAM):part Ⅱ[J].IEEE Robotics & Automation Magazine, 2006, 13(3):108-117.
[5] [5] CADENA C, CARLONE L, CARRILLO H, et al.Past, pres-ent, and future of simultaneous localization and mapping:toward the robust-perception age[J].IEEE Transactions on Robotics, 2016, 32(6):1309-1332.
[10] [10] WU J Q, HAO X, ZHENG J Y.Automatic background filtering and lane identification with roadside LiDAR data[C]//IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).Yokohama:IEEE, 2017:1-6.
[13] [13] HUANG S D, DISSANAYAKE G.Convergence analysis for extended Kalman filter based SLAM[C]//Proceedings of IEEE International Conference on Robotics and Automation, 2006.ICRA 2006.Orlando:IEEE, 2006:412-417.
[14] [14] SMITH R, SELF M, CHEESEMAN P.Estimating uncertain spatial relationships in robotics[M]//INGEMAR J C, GORDON T W.Autonomous robot vehicles.New York:Springer, 1990:167-193.
[16] [16] SMITH R, SELF M, CHEESEMAN P C.A stochastic map for uncertain spatial relationships[C]//Proceedings of the 4th International Symposium on Robotics Research.Cambridge:MIT Press, 1988:467-474.
[17] [17] SMITH R, CHEESEMAN P.On the representation and estimation of spatial uncertainty[J].The International Journal of Robotics Research, 1986, 5(4):56-68.
[18] [18] JULIER S J, UHLMANNJ K, DURRANT-WHYTE H F.A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transations on Automatic Control, 2000, 45(3):477-482.
[20] [20] GORDON N J, SALMOND D J, SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings on Radar and Signal Processing, 1993, 140(2):107-113.
[21] [21] DOUCET A, FREITAS D N, MURPHY K, et al.Rao-Blackwellised particle filtering for dynamic Bayesian networks[C]//Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence(UAI2000).San Francisco:arXiv Preprint, 2013:176-183.
[22] [22] MONTEMERLO M, THRUN S, KOLLER D, et al.Fast-SLAM:a factored solution to the simultaneous localization and mapping problem[C]//Proceedings of the AAAI National Conference on Artificial Intelligence.[S.l.]:AAAI, 2002:593-598.
[23] [23] MONTEMERLO M, THRUN S, ROLLER D, et al.Fast-SLAM 2.0:an improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]//International Joint Conference on Artificial Intelligence.Burlington:Morgan Kaufmann Publishers Inc., 2003:1151-1156.
[25] [25] GRISETTI G, STACHNISS C, BURGARD W.Improved techmiques for grid mapping with Rao-Blackwellized particle filters[J].IEEE Transactions on Robotics, 2007, 23(1):34-46.
[26] [26] BLANCO J L, GONZALEZ J, FERNANDEZ-MADRIGAL J A.Optimal filtering for non-parametric observation mo-dels:applications to localization and SLAM[J].International Journal of Robotics Research, 2010, 29(14):1726-1742.
[27] [27] LU F, MILIOS E.Globally consistent range scan alignment for environ-globally consistent range scan alignment for environment mapping[J].Autonomous Robots, 1997, 4(4):333-349.
[28] [28] KONOLIGE K, GRISETTI G, KMMERLE R, et al.Efficient sparse pose adjustment for 2D mapping[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Taipei:IEEE, 2010:22-29.
[29] [29] KOHLBRECHER S, STRYK O V, MEYER J, et al.A flexible and scalable SLAM system with full 3D motion estimation[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics.Kyoto:IEEE, 2011:155-160.
[30] [30] HESS W, KOHLER D, RAPP H, et al.Real-time loop closure in 2D LIDAR SLAM[C]//IEEE International Conference on Robotics and Automation(ICRA).Stockholm:IEEE, 2016:1271-1278.
[31] [31] ZHANG J, SINGH S.LOAM:lidar odometry and mapping in real-time[C]//Robotics:Science and Systems Conference.Berkeley:[s.n.], 2014:1-9.
[32] [32] DESCHAUD J E.IMLS-SLAM:scan-to-model matching based on 3D data[C]//IEEE International Conference on Robotics and Automation(ICRA).Brisbane:IEEE, 2018:2480-2485.
[33] [33] BEHLEY J, STACHNISS C.Efficient surfel-based SLAM using 3D laser range data in urban environments[C]//Robotics:Science and Systems 2018.[S.l.]:[s.n.], 2018:1-10.
[34] [34] SHAN T X, ENGLOT B.LeGO-LOAM:lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Madrid:IEEE, 2018:4758-4765.
[35] [35] KOIDE K.A portable 3D lidar-based system for long-term and wide-area people behavior measurement[J].International Journal of Advanced Robotic Systems, 2019, 16(2):1-13.
[36] [36] SHAN T X, ENGLOT B, MEYERS D, et al.LIO-SAM:tightly-coupled lidar inertial odometry via smoothing and mapping[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Las Vegas:IEEE, 2020:5135-5142.
[37] [37] LI B, WANG Y Q, ZHANG Y, et al.Correction to:GP-SLAM:laser-based SLAM approach based on regionalized Gaussian process map reconstruction[J].Autonomous Robots, 2020, 44(6):947-967.
[39] [39] ZHOU P W, GUO X X, PEI X F, et al.T-LOAM:truncated least squares LiDAR-only odometry and mapping in real time[J].IEEE Transactions on Geoscience and Remote Sensing, 2021, 60(99):1-13.
[40] [40] DAVISON A J.Real-time simultaneous localisation and mapping with a single camera[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision.Nice:IEEE, 2003:1403-1410.
[41] [41] KLEIN G, MURRAY D.Parallel tracking and mapping for small AR workspaces[C]//The 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.Nara:IEEE, 2007:225-234.
[42] [42] MUR-ARTAL R, MONTIEL J M M, TARDOS J D.ORB-SLAM:a versatile and accurate monocular SLAM system[J].IEEE Transactions on Robotics, 2015, 31(5):1147-1163.
[43] [43] MUR-ARTAL R, TARDS J D.ORB-SLAM2:an open- source SLAM system for monocular, stereo, and RGB-D cameras[J].IEEE Transactions on Robotics, 2017, 33(5):1255-1262.
[44] [44] CAMPOS C, ELVIRA R, RODRGUEZ J J G, et al.ORB-SLAM3:an accurate open-source library for visual, visual-inertial and multi-map SLAM[J].IEEE Transactions on Robotics, 2021, 37(6):1874-1890.
[45] [45] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J.DTAM:dense tracking and mapping in real-time[C]//IEEE International Conference on Computer Vision.Barcelona:IEEE, 2011:2320-2327.
[47] [47] ENGEL J, SCHPS T, CREMERS D.LSD-SLAM:large-scale direct monocular SLAM[C]//European Conference on Computer Vision.Cham: Springer, 2014:834-849.
[48] [48] FORSTER C, PIZZOLI M, SCARAMUZZA D.SVO:fast semi-direct monocular visual odometry[C]//IEEE International Conference on Robotics and Automation(ICRA).HongKong:IEEE, 2014:5-22.
[49] [49] ENGEL J, KOLTUN V, CREMERS D.Direct sparse odo-metry[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 40(3):611-625.
[52] [52] NEWCOMBE R A, IZADI S, HILLIGES O, et al.KinectFusion:real-time dense surface mapping and tracking[C]//The 10th IEEE International Symposium on Mixed and Augmented Reality.Basel:IEEE, 2011:127-136.
[55] [55] LEUTENEGGER S, LYNEN S, BOSSE M, et al.Keyframe-based visual-inertial odometry using nonlinear optimization[J].International Journal of Robotics Research, 2014, 34(3):314-334.
[56] [56] BLOESCH M, BURRI M, OMARI S, et al.Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J].The International Journal of Robotics Research, 2017, 36(10):1053-1072.
[57] [57] QIN T, LI P L, SHEN S J, et al.VINS-Mono:a robust and versatile monocular visual-inertial state estimator[J].IEEE Transactions on Robotics, 2018, 34(4):1004-1020.
[58] [58] ZHANG J, SINGH S.Visual-lidar odometry and mapping:low-drift, robust, and fast[C]//IEEE International Conference on Robotics & Automation.Seattle:IEEE, 2015:2174-2181.
[59] [59] LU D.Vision-enhanced lidar odometry and mapping[D].Pittsburgh:Carnegie Mellon University, 2016.
[60] [60] ZHANG J, SINGH S.Laser-visual-inertial odometry and mapping with high robustness and low drift[J].Journal of Field Robotics, 2018, 35(8):1242-1264.
[61] [61] GRAETER J, WILCZYNSKI A, LAUER M.LIMO:lidar-monocular visual odometry[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Madrid: IEEE, 2018:7872-7879.
Get Citation
Copy Citation Text
MA Zhiyan, SHAO Changsong, YANG Guangyou, LI Hui. Research Progress of SLAM Technology[J]. Electronics Optics & Control, 2023, 30(3): 78
Category:
Received: Feb. 22, 2022
Accepted: --
Published Online: Apr. 3, 2023
The Author Email: