Acta Photonica Sinica, Volume. 49, Issue 10, 1015001(2020)

Flotation Performance Recognition Based on Dual-modality Convolutional Neural Network Adaptive Transfer Learning

Yi-peng LIAO1... Jie-jie YANG1, Zhi-gang WANG2 and Wei-xing WANG1,* |Show fewer author(s)
Author Affiliations
  • 1College of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China
  • 2Fujian Jindong Mining Co. Ltd. ,Sanming,Fujian 365101,China
  • show less
    Figures & Tables(12)
    Flotation foam dual-modality image
    Dual-modality CNN feature extraction and recognition model
    Double hidden layer autoencoder extreme learning machine
    Adaptive transfer learning model
    The operation effect of each optimization algorithm
    Performance test of double hidden layer autoencoder extreme learning machine
    Test results of different training samples
    Comparison of performance recognition results
    • Table 1. Benchmark functions information

      View table
      View in Article

      Table 1. Benchmark functions information

      FunctionFunction formulaParameter rangeOptimum value
      Rosenbrockf1(x)=i=1N-1[100(xi+1-xi2)2+(xi-1)2][-10,10]0
      Rastrigrinf2(x)=i=1N[xi2-10cos(2πxi2)+10][-100,100]0
      Schewefelf3(x)=418.9829N+-xisin(xi)[-500,500]0
      Shubertf4(x)=0.5-sin2x12+x22-0.5[1+0.001(x12+x22)]2[-100,100]1
      Schafferf5(x)=i=15icos(i+1)x+ii=15icos(i+1)y+i[-100,100]-186.730 9
    • Table 2. The average optimal value probability (%) and the number of iterations

      View table
      View in Article

      Table 2. The average optimal value probability (%) and the number of iterations

      λ

      Δθ

      0.1π0.2π0.3π0.4π0.5π
      1.197.89/205.198.56/210.299.09/196.598.79/213.697.37/212.4
      1.297.88/208.898.84/204.499.20/204.799.16/204.698.31/198.5
      1.398.14/199.498.78/199.499.15/202.699.35/198.497.81/201.6
      1.498.56/197.698.95/196.499.64/198.799.64/202.798.33/208.1
      1.598.85/204.599.35/196.699.70/192.999.81/205.399.11/205.3
      1.699.36/209.499.12/201.399.95/190.299.85/203.898.76/197.4
      1.799.87/201.899.76/195.299.92/191.899.65/206.299.23/196.6
      1.899.78/194.399.23/198.899.63/194.399.54/199.599.15/196.1
      1.999.46/199.298.84/208.399.24/201.899.21/198.198.86/195.8
      2.098.95/206.498.97/207.199.26/202.798.89/201.398.15/202.3
    • Table 3. Test results of data sets for various KELM algorithm

      View table
      View in Article

      Table 3. Test results of data sets for various KELM algorithm

      Data setLonosphereShuttleUSPS
      Test itemAccuracy/%Times/sAccuracy/%Times/sAccuracy/%Times/s
      KELM90.121.25391.3126.93091.75162.961
      AE⁃KELM94.232.01495.5238.23795.81720.834
      DAE⁃KELM96.454.58798.3145.41798.351 646.250
    • Table 4. Recognition effect of different methods

      View table
      View in Article

      Table 4. Recognition effect of different methods

      AlgorithmFeature extraction methodClassification algorithmAccuracy/%Standard deviation/%
      Ref. [6]AlexnetRandom forest85.934.24
      Ref. [7]CNN feature statisticsPW mean⁃shift91.251.82
      Ref. [8]Two layers CNNSVM89.062.95
      Ref. [9]Alexnet transfer learningRandom forest93.022.68
      ProposedDual⁃modality alexnet transfer learningAdaptive DAE⁃KELM96.831.96
    Tools

    Get Citation

    Copy Citation Text

    Yi-peng LIAO, Jie-jie YANG, Zhi-gang WANG, Wei-xing WANG. Flotation Performance Recognition Based on Dual-modality Convolutional Neural Network Adaptive Transfer Learning[J]. Acta Photonica Sinica, 2020, 49(10): 1015001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 9, 2020

    Accepted: Jun. 17, 2020

    Published Online: Mar. 10, 2021

    The Author Email: WANG Wei-xing (wxwwx@fzu.edu.com)

    DOI:10.3788/gzxb20204910.1015001

    Topics