Optics and Precision Engineering, Volume. 32, Issue 18, 2836(2024)
Instance segmentation of mouse brain scanning electron microscopy images based on fine-tuning nature image model
[1] A S FRANGAKIS, R HEGERL. Segmentation of two- and three-dimensional data from electron microscopy using eigenvector analysis. Journal of Structural Biology, 138, 105-113(2002).
[2] G KYLBERG, M UPPSTRÖM, K O HEDLUND et al. Segmentation of virus particle candidates in transmission electron microscopy images. Journal of Microscopy, 245, 140-147(2012).
[3] T LIU, C JONES, M SEYEDHOSSEINI et al. A modular hierarchical approach to 3D electron microscopy image segmentation. Journal of Neuroscience Methods, 226, 88-102(2014).
[4] T LIU, E JURRUS, M SEYEDHOSSEINI et al. Watershed merge tree classification for electron microscopy image segmentation. Proceedings of the IAPR International Conference on Pattern Recognition International Conference on Pattern Recognition, 2012, 133-137(2012).
[5] C KARABAĞ, M L JONES, C J PEDDIE et al. Segmentation and modelling of the nuclear envelope of HeLa cells imaged with serial block face scanning electron microscopy. Journal of Imaging, 5, 75(2019).
[6] A FAKHRY, T ZENG, S W JI. Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Transactions on Medical Imaging, 36, 447-456(2017).
[7] C XIAO, J LIU, X CHEN et al. Deep contextual residual network for electron microscopy image segmentation in connectomics, 378-381(2018).
[8] Y JIANG, C XIAO, L L LI et al. An effective encoder-decoder network for neural cell bodies and cell nucleus segmentation of em images, 6302-6305(2019).
[9] V CASSER, K KANG, H PFISTER et al. Fast mitochondria detection for connectomics, 111-120(2020).
[10] Y CAO, S G LIU, Y L PENG et al. DenseUNet: densely connected UNet for electron microscopy image segmentation. IET Image Processing, 14, 2682-2689(2020).
[11] T M QUAN, D G C HILDEBRAND, W K JEONG. FusionNet: a deep fully residual convolutional neural network for image segmentation in connectomics. ArXiv e-Prints(2016).
[12] Z R LUO, Y WANG, S K LIU et al. Hierarchical encoder-decoder with soft label-decomposition for mitochondria segmentation in EM images. Frontiers in Neuroscience, 15, 687832(2021).
[13] A KHADANGI, T BOUDIER, V RAJAGOPAL. EM-stellar: benchmarking deep learning for electron microscopy image segmentation. Bioinformatics, 37, 97-106(2021).
[14] H SPIERS, H SONGHURST, L NIGHTINGALE et al. Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations. Traffic, 22, 240-253(2021).
[15] Z M YUAN, X F MA, J J YI et al. HIVE-Net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in EM images. Computer Methods and Programs in Biomedicine, 200, 105925(2021).
[16] M OQUAB, T DARCET, T MOUTAKANNI et al. Dinov2: Learning Robust Visual Features without Supervision(2023).
[17] A KIRILLOV, E MINTUN, N RAVI et al. Segment anything, 3992-4003(2023).
[18] J MA, Y T HE, F F LI et al. Segment anything in medical images. Nature Communications, 15, 654(2024).
[19] J WU, R FU, H FANG et al. Medical Sam Adapter: adapting segment anything model for medical image segmentation(2023).
[20] D L WEI, Z D LIN, D FRANCO-BARRANCO et al. MitoEM dataset: Large-scale 3D Mitochondria Instance Segmentation from EM images, 66-76(2020).
[21] Z LIN, D WEI, M D PETKOVA et al. Nucmm Dataset: 3D neuronal nuclei instance segmentation at sub-cubic millimeter scale; proceedings of the medical image computing and computer assisted intervention-MICCAI(2021).
[22] K M HE, X L CHEN, S N XIE et al. Masked autoencoders are scalable vision learners, 15979-15988(2022).
[23] J NUNEZ-IGLESIAS, R KENNEDY, T PARAG et al. Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS One, 8(2013).
Get Citation
Copy Citation Text
Ao CHENG, Guoqiang ZHAO, Ruobing ZHANG, Lirong WANG. Instance segmentation of mouse brain scanning electron microscopy images based on fine-tuning nature image model[J]. Optics and Precision Engineering, 2024, 32(18): 2836
Category:
Received: Jun. 15, 2024
Accepted: --
Published Online: Nov. 18, 2024
The Author Email: WANG Lirong (wanglirong@suda.edu.cn)