Optics and Precision Engineering, Volume. 32, Issue 18, 2836(2024)

Instance segmentation of mouse brain scanning electron microscopy images based on fine-tuning nature image model

Ao CHENG1... Guoqiang ZHAO2, Ruobing ZHANG2 and Lirong WANG1,* |Show fewer author(s)
Author Affiliations
  • 1Soochow University, School of Electronic and information, Suzhou25000, China
  • 2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou15000, China
  • show less
    References(23)

    [1] A S FRANGAKIS, R HEGERL. Segmentation of two- and three-dimensional data from electron microscopy using eigenvector analysis. Journal of Structural Biology, 138, 105-113(2002).

    [2] G KYLBERG, M UPPSTRÖM, K O HEDLUND et al. Segmentation of virus particle candidates in transmission electron microscopy images. Journal of Microscopy, 245, 140-147(2012).

    [3] T LIU, C JONES, M SEYEDHOSSEINI et al. A modular hierarchical approach to 3D electron microscopy image segmentation. Journal of Neuroscience Methods, 226, 88-102(2014).

    [4] T LIU, E JURRUS, M SEYEDHOSSEINI et al. Watershed merge tree classification for electron microscopy image segmentation. Proceedings of the IAPR International Conference on Pattern Recognition International Conference on Pattern Recognition, 2012, 133-137(2012).

    [5] C KARABAĞ, M L JONES, C J PEDDIE et al. Segmentation and modelling of the nuclear envelope of HeLa cells imaged with serial block face scanning electron microscopy. Journal of Imaging, 5, 75(2019).

    [6] A FAKHRY, T ZENG, S W JI. Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Transactions on Medical Imaging, 36, 447-456(2017).

    [7] C XIAO, J LIU, X CHEN et al. Deep contextual residual network for electron microscopy image segmentation in connectomics, 378-381(2018).

    [8] Y JIANG, C XIAO, L L LI et al. An effective encoder-decoder network for neural cell bodies and cell nucleus segmentation of em images, 6302-6305(2019).

    [9] V CASSER, K KANG, H PFISTER et al. Fast mitochondria detection for connectomics, 111-120(2020).

    [10] Y CAO, S G LIU, Y L PENG et al. DenseUNet: densely connected UNet for electron microscopy image segmentation. IET Image Processing, 14, 2682-2689(2020).

    [11] T M QUAN, D G C HILDEBRAND, W K JEONG. FusionNet: a deep fully residual convolutional neural network for image segmentation in connectomics. ArXiv e-Prints(2016).

    [12] Z R LUO, Y WANG, S K LIU et al. Hierarchical encoder-decoder with soft label-decomposition for mitochondria segmentation in EM images. Frontiers in Neuroscience, 15, 687832(2021).

    [13] A KHADANGI, T BOUDIER, V RAJAGOPAL. EM-stellar: benchmarking deep learning for electron microscopy image segmentation. Bioinformatics, 37, 97-106(2021).

    [14] H SPIERS, H SONGHURST, L NIGHTINGALE et al. Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations. Traffic, 22, 240-253(2021).

    [15] Z M YUAN, X F MA, J J YI et al. HIVE-Net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in EM images. Computer Methods and Programs in Biomedicine, 200, 105925(2021).

    [16] M OQUAB, T DARCET, T MOUTAKANNI et al. Dinov2: Learning Robust Visual Features without Supervision(2023).

    [17] A KIRILLOV, E MINTUN, N RAVI et al. Segment anything, 3992-4003(2023).

    [18] J MA, Y T HE, F F LI et al. Segment anything in medical images. Nature Communications, 15, 654(2024).

    [19] J WU, R FU, H FANG et al. Medical Sam Adapter: adapting segment anything model for medical image segmentation(2023).

    [20] D L WEI, Z D LIN, D FRANCO-BARRANCO et al. MitoEM dataset: Large-scale 3D Mitochondria Instance Segmentation from EM images, 66-76(2020).

    [21] Z LIN, D WEI, M D PETKOVA et al. Nucmm Dataset: 3D neuronal nuclei instance segmentation at sub-cubic millimeter scale; proceedings of the medical image computing and computer assisted intervention-MICCAI(2021).

    [22] K M HE, X L CHEN, S N XIE et al. Masked autoencoders are scalable vision learners, 15979-15988(2022).

    [23] J NUNEZ-IGLESIAS, R KENNEDY, T PARAG et al. Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS One, 8(2013).

    CLP Journals

    [1] Weixia ZHAO, Lingchao BAI, Lixin ZHANG, Junbiao LIU, Bohua YIN, Li HAN. Design and experiment of multi-beam electron source[J]. Optics and Precision Engineering, 2025, 33(5): 741

    [2] Weixia ZHAO, Lingchao BAI, Lixin ZHANG, Junbiao LIU, Bohua YIN, Li HAN. Design and experiment of multi-beam electron source[J]. Optics and Precision Engineering, 2025, 33(5): 741

    Tools

    Get Citation

    Copy Citation Text

    Ao CHENG, Guoqiang ZHAO, Ruobing ZHANG, Lirong WANG. Instance segmentation of mouse brain scanning electron microscopy images based on fine-tuning nature image model[J]. Optics and Precision Engineering, 2024, 32(18): 2836

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 15, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: WANG Lirong (wanglirong@suda.edu.cn)

    DOI:10.37188/OPE.20243218.2836

    Topics