Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 11, 4154(2023)
Research Situation Analysis of Glass Ceramics Based on Visual Knowledge Graph
[1] [1] HOLAND WBEALL G H. Glass-ceramic technology[M]. 3rd ed. HobokenUSA: John Wiley & Sons Inc2020279-308.
[3] [3] FERNANDES J SGENTILE PPIRES R Aet al. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue[J]. Acta Biomaterialia201759: 2-11.
[6] [6] MIOLA MPAKZAD YBANIJAMALI Set al. Glass-ceramics for cancer treatment: so closeor yet so far?[J]. Acta Biomaterialia201983: 55-70.
[7] [7] FU LENGQVIST HXIA W. Glass-ceramics in dentistry: a review[J]. Materials202013(5): 1049.
[9] [9] WANG JWANG M TTIAN Yet al. A review on photocatalytic glass ceramics: fundamentalspreparationperformance enhancement and future development[J]. Catalysts. 202212(10): 1235.
[10] [10] LIN L YGUO WLI M Jet al. Progress and perspective of glass-ceramic solid-state electrolytes for lithium batteries[J]. Materials202316(7): 2655.
[13] [13] CHEN D QWANG Z YZHOU Yet al. Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: structural characterizationtunable luminescence and temperature sensing behavior[J]. Journal of Alloys and Compounds2015646: 339-344.
[14] [14] CHEN D QZHOU YWAN Z Yet al. Tuning into single-band red upconversion luminescence in Yb3+/Ho3+ activated nano-glass-ceramics through Ce3+ doping[J]. Dalton Transactions201544(12): 5288-5293.
[15] [15] CHEN D QLIU SLI X Yet al. Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+: YF3 nanocrystals embedded glass ceramic[J]. Journal of the European Ceramic Society201737(15): 4939-4945.
[16] [16] LI X YCHEN X AYUAN Set al. Eu3+-doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallizationTb3+-bridged energy transfer and tunable luminescence[J]. Journal of Materials Chemistry C20175(39): 10201-10210.
[17] [17] HUANG X YCHEN D QLIN Let al. Infrared quantum cutting in Er3+: NaYF4 nanostructured glass ceramics for solar cells[J]. Optik2014125(1): 565-568.
[18] [18] ZHANG RLIN HCHEN D Qet al. Integrated broadband near-infrared luminescence in transparent glass ceramics containing γ-Ga2O3: Ni2+ and β-YF3: Er3+ nanocrystals[J]. Journal of Alloys and Compounds2013552: 398-404.
[19] [19] STAMBOULI WELHOUICHET HGELLOZ Bet al. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics[J]. Journal of Luminescence2013138: 201-208.
[20] [20] CHENU SVRON EGENEVOIS Cet al. Long-lasting luminescent ZnGa2O4: Cr3+ transparent glass-ceramics[J]. Journal of Materials Chemistry C20142(46): 10002-10010.
[21] [21] TARAFDER AMOLLA A RMUKHOPADHYAY Set al. Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO-Al2O3-B2O3-SiO2 glass derived willemite glass-ceramic nanocomposites[J]. Optical Materials201436(9): 1463-1470.
[22] [22] TARAFDER AMOLLA A RDEY Cet al. Thermalstructuraland enhanced photoluminescence properties of Eu3+-doped transparent willemite glass-ceramic nanocomposites[J]. Journal of the American Ceramic Society201396(8): 2424-2431.
[23] [23] EFFENDY NABDUL WAHAB ZMOHAMED KAMARI Het al. Structural and optical properties of Er3+-doped willemite glass-ceramics from waste materials[J]. Optik2016127(24): 11698-11705.
[24] [24] BAGHBANI FMOZTARZADEH FMOZAFARI Met al. Production and characterization of a Ag- and Zn-doped glass-ceramic material and in vitro evaluation of its biological effects[J]. Journal of Materials Engineering and Performance201625(8): 3398-3408.
[25] [25] BEJARANO JCAVIEDES PPALZA H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics[J]. Biomedical Materials201510(2): 025001.
[26] [26] CHEN QBAINO FSPRIANO Set al. Modelling of the strength-porosity relationship in glass-ceramic foam scaffolds for bone repair[J]. Journal of the European Ceramic Society201434(11): 2663-2673.
[27] [27] MOLINO GBARI ABAINO Fet al. Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass-ceramic scaffolds for bone tissue regeneration[J]. Journal of Materials Science201752(15): 9103-9114.
[28] [28] ELSAKA S EELNAGHY A M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic[J]. Dental Materials201632(7): 908-914.
[29] [29] HAYASHI ANOI KTANIBATA Net al. High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources2014258: 420-423.
[30] [30] SHIN B RNAM Y JOH D Yet al. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. Electrochimica Acta2014146: 395-402.
[31] [31] DING L FNING WWANG Q Wet al. Preparation and characterization of glass-ceramic foams from blast furnace slag and waste glass[J]. Materials Letters2015141: 327-329.
[32] [32] LI B WDU Y SZHANG X Fet al. Crystallization characteristics and properties of high-performance glass-ceramics derived from Baiyunebo east mine tailing[J]. Environmental Progress & Sustainable Energy201534(2): 420-426.
[34] [34] CHEN XZHANG H BJIA W Tet al. Preparation and luminescence properties of Eu2O3 doped glass ceramics containing Na3Gd(PO4)2[J]. Optik2021238: 166778.
[35] [35] GUO Z HWANG L YLV H Met al. Preparation and luminescence properties of Tb3+ doped and Tb3+/Sm3+ co-doped Na3Y(PO4)2 crystalline glass ceramics[J]. Materials Science and Engineering: B2021272: 115352.
[36] [36] WANG Q WYU X MWANG Tet al. Tb4O7-Sm2O3 co-doped glass ceramics containing Ba3Gd(PO4)3: preparationtunable emission and temperature sensing properties[J]. Journal of Alloys and Compounds2022927: 167020.
[37] [37] WANG TWANG S YZHANG H Bet al. Tm3+-Dy3+-Eu3+ tri-doped transparent glass-ceramics containing NaY(MoO4)2 crystal phase: preparationenergy transferwarm white light emitting[J]. Optical Materials2020104: 109851.
[38] [38] WANG S YWANG TZHANG H Bet al. Eu3+ doped glass ceramics containing NaLa(MoO4)2 crystallite: preparationstructure and luminescence properties[J]. Journal of Luminescence2020226: 117420.
[39] [39] YAN Y MZHANG H BHUO H Het al. Luminescence and energy transfer of Dy3+-Eu3+ co-doped glass-ceramics containing ZnMoO4[J]. Journal of Alloys and Compounds2022897: 163164.
[40] [40] YU X MZHAO T LWANG Tet al. Up-conversion luminescence properties of Ho3+-Yb3+ co-doped transparent glass ceramics containing Y2Ti2O7[J]. Journal of Non-Crystalline Solids2021574: 121163.
[41] [41] JIA F YXU S NZHANG G Det al. Effect of Mg2+/Sr2+ addition on luminescence properties of Dy3+ doped glass ceramics containing Ca2Ti2O6[J]. Optical Materials2022131: 112715.
[42] [42] WEI Y LZHANG H BSU C Het al. Luminescence and preparation of Dy2O3 doped SrCO3-WO3-SiO2 glass ceramics[J]. Journal of Luminescence2020220: 117021.
[43] [43] LUO G MCHEN JZOU X Yet al. Eu3+ doped K2O-B2O3-Al2O3-SiO2 glass ceramics containing KAlSiO4 crystalline phase: realizing red emission and high thermal stability[J]. Optik2022267: 169766.
[44] [44] JIA W TSU C HWEI Y Let al. Luminescence properties and energy transfer of Sm3+/Tb3+ co-doped glass ceramics containing Na9YSi6O18[J]. Journal of Luminescence2019215: 116576.
[45] [45] WANG S JTIAN JYANG Ket al. Crystallization kinetics behavior and dielectric energy storage properties of strontium potassium niobate glass-ceramics with different nucleating agents[J]. Ceramics International201844(7): 8528-8533.
[46] [46] YANG KLIU J RSHEN Bet al. Effects of TiO2 addition on dielectric and energy storage properties of BaO-K2O-Nb2O5-SiO2 glass ceramics[J]. Ceramics International201844(6): 6181-6185.
[47] [47] LIU J RYANG KZHAI J Wet al. Effects of crystallization temperature on phase evolution and energy storage properties of BaO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics[J]. Journal of the European Ceramic Society201838(5): 2312-2317.
[48] [48] XIE S FLIU C SBAI H Ret al. Simultaneously ultra-low dielectric loss and rapid discharge time in Ta2O5 doped niobate-based glass-ceramics[J]. Journal of Materials Science202156(29): 16278-16289.
[49] [49] LIU J HWANG H TZHAI J Wet al. Crystallization mechanisms and energy-storage performances in BaO-SrO-Na2O-Nb2O5 based glass-ceramics[J]. Journal of Electronic Materials201847(12): 7429-7434.
[50] [50] CHEN K KBAI H RYAN Fet al. Achieving superior energy storage properties and ultrafast discharge speed in environment-friendly niobate-based glass ceramics[J]. ACS Applied Materials & Interfaces202113(3): 4236-4243.
[51] [51] LIU C SXIE S FBAI H Ret al. Excellent energy storage performance of niobate-based glass-ceramics via introduction of nucleating agent[J]. Journal of Materiomics20228(4): 763-771.
[52] [52] XING J HSHANG FCHEN G H. Upconversion luminescence of Yb3+/Er3+ co-doped NaSrPO4 glass ceramic for optical thermometry[J]. Ceramics International202147(6): 8330-8337.
[53] [53] XING J HSHANG FLI Let al. Structureup-conversion luminescence and optical temperature sensitive properties of glass ceramics containing Ca5(PO4)3F with double luminescence centers[J]. Ceramics International202248(1): 1098-1106.
[54] [54] CUI S CCHEN G H. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped Sr10(PO4)6O transparent glass-ceramics[J]. Journal of the American Ceramic Society2020103(12): 6932-6940.
[55] [55] XING J HLIU L MSHANG Fet al. Preparationstructure and temperature dependence of spectral properties of Yb3+/Er3+ doped Sr5(PO4)3F transparent glass ceramics[J]. Journal of Alloys and Compounds2021884: 161018.
[56] [56] SHANG FCHEN YXU J Wet al. Up-conversion luminescence and highly sensing characteristics of Er3+/Yb3+ co-doped borophosphate glass-ceramics[J]. Optics Communications2019441: 38-44.
[57] [57] LUO FXING J HQIN Y Yet al. Up-conversion luminescencetemperature sensitive and energy storage performance of lead-free transparent Yb3+/Er3+ co-doped Ba2NaNb5O15 glass-ceramics[J]. Journal of Alloys and Compounds2022910: 164859.
[58] [58] XING J HQIN L NTANG Jet al. Enhanced upconversion luminescence and temperature sensing feature in NaBi(MoO4)2: Er3+Yb3+ transparent glass ceramics[J]. Journal of Non-Crystalline Solids2022576: 121267.
[59] [59] GAO Z XTIAN BLIU M Yet al. Luminescence and temperature-dependent sensitivity of Yb3+/Er3+ doped glass ceramics containing NaGd(MoO4)2 nanocrystals[J]. Journal of Non-Crystalline Solids2023603: 122114.
[60] [60] KARGOZAR SMOZAFARI MGHODRAT Set al. Copper-containing bioactive glasses and glass-ceramics: from tissue regeneration to cancer therapeutic strategies[J]. Materials Science and Engineering: C2021121: 111741.
[61] [61] FIUME EMIGNECO CVERN Eet al. Comparison between bioactive sol-gel and melt-derived glasses/glass-ceramics based on the multicomponent SiO2-P2O5-CaO-MgO-Na2O-K2O system[J]. Materials202013(3): 540.
[62] [62] BORGES RMENDONA-FERREIRA LRETTORI Cet al. New sol-gel-derived magnetic bioactive glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application[J]. Materials Science and Engineering: C2021120: 111692.
[63] [63] ZHANG J JZHANG X YYUAN J Set al. Hierarchically porous glass-ceramics by alkaline activation and crystallization from municipal solid waste incineration ashes[J]. Journal of Cleaner Production2022364: 132693.
[64] [64] ELSAYED HRINCN R AMOLINO Get al. Bioactive glass-ceramic foam scaffolds from ‘inorganic gel casting’ and sinter-crystallization[J]. Materials201811(3): 349.
Get Citation
Copy Citation Text
GAO Dangni, GUO Hongwei, WANG Yi, BAI Yun, GAO Yibo. Research Situation Analysis of Glass Ceramics Based on Visual Knowledge Graph[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 4154
Category:
Received: Sep. 4, 2023
Accepted: --
Published Online: Dec. 11, 2023
The Author Email: Dangni GAO (dony0505@163.com)
CSTR:32186.14.