Spectroscopy and Spectral Analysis, Volume. 37, Issue 1, 189(2017)
Modeling and Predicting of MODIS Leaf Area Index Time Series Based on a Hybrid SARIMA and BP Neural Network Method
[1] [1] Xiao Z Q, Liang S L, Wang J D, et al. Remote Sensing of Environment, 2011, 115(1): 97.
[2] [2] Jin H A, Wang J D, Xiao Z Q, et al. Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International. IEEE, 2010.
[4] [4] Savoy P, Mackay D S. Agricultural and Forest Meteorology, 2015, 200: 46.
[5] [5] Dickinson R E, Tian Y H, Liu Q, et al. Journal of Geophysical Research: Atmospheres (1984—2012), 2008, 113(D16).
[6] [6] Jiang B, Liang S L, Wang J D, et al. Remote Sensing of Environment, 2010, 114(7): 1432.
[7] [7] Gao F, Morisette J T, Wolfe R E, et al. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 60.
[8] [8] Zhang G P. Neurocomputing, 2003, 50: 159.
[11] [11] Box G E, Jenkins G M, Reinsel G C. Time Series Analysis: Forecasting and Control. John Wiley & Sons, 2011.
[12] [12] Cheng C, Cheng X S, Dai N, et al. Computers in Biology and Medicine, 2015, 66: 103.
[13] [13] Liu Y K, Xie F, Xie C L, et al. Annals of Nuclear Energy, 2015, 85: 566.
[14] [14] Fu L M. Neural Networks in Computer Intelligence. Tata: McGraw-Hill Education, 2003.
[15] [15] Khashei M, Bijari M. Applied Soft Computing, 2011, 11(2): 2664.
[16] [16] Faruk D . Engineering Applications of Artificial Intelligence, 2010, 23(4): 586.
Get Citation
Copy Citation Text
JIANG Chun-lei, ZHANG Shu-qing, ZHANG Ce, LI Hua-peng, DING Xiao-hui. Modeling and Predicting of MODIS Leaf Area Index Time Series Based on a Hybrid SARIMA and BP Neural Network Method[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 189
Received: Nov. 25, 2015
Accepted: --
Published Online: Feb. 9, 2017
The Author Email: Chun-lei JIANG (jiangchunlei@iga.ac.cn)