Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0325001(2024)

Spintronic Terahertz Emission Spectroscopy Based on Ultrafast Terahertz Scattering Scanning Near-Field Optical Microscope (Invited)

Jiaqi Wang1, Mingcong Dai1, Yihang Ma1, Youwei Wang1, Zijian Zhang2, Jiahua Cai1, Peng Chen3, Caihua Wan3, Xiufeng Han3, and Xiaojun Wu1,4、*
Author Affiliations
  • 1School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
  • 2School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 3Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
  • 4Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    References(45)

    [1] Wu X J, Ren Z J, Kong D Y et al. Lithium niobate strong-field terahertz source and its applications[J]. Chinese Journal of Lasers, 49, 1914001(2022).

    [2] Mittleman D M. Twenty years of terahertz imaging[J]. Optics Express, 26, 9417-9431(2018).

    [3] Li P Y, Liu S J, Chen X H et al. Spintronic terahertz emission with manipulated polarization (STEMP)[J]. Frontiers of Optoelectronics, 15, 12(2022).

    [4] Hafez H A, Chai X, Ibrahim A et al. Intense terahertz radiation and their applications[J]. Journal of Optics, 18, 093004(2016).

    [5] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).

    [6] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters, 19, 320-323(1971).

    [7] Wu X J, Carbajo S, Ravi K et al. Terahertz generation in lithium niobate driven by Ti: sapphire laser pulses and its limitations[J]. Optics Letters, 39, 5403-5406(2014).

    [8] Wu X J, Ma J L, Zhang B L et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti: sapphire laser pulses[J]. Optics Express, 26, 7107-7116(2018).

    [9] Wu X J, Guo F W, Ma J L et al. High-energy strong-field terahertz pulses based on tilted-pulse-front technique[J]. Chinese Journal of Lasers, 46, 0614008(2019).

    [10] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).

    [11] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).

    [12] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).

    [13] Tang H, Zhao L R, Zhu P F et al. Stable and scalable multistage terahertz-driven particle accelerator[J]. Physical Review Letters, 127, 074801(2021).

    [14] Zhang D F, Fakhari M, Cankaya H et al. Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation[J]. Physical Review X, 10, 011067(2020).

    [15] Zhang D F, Fallahi A, Hemmer M et al. Segmented terahertz electron accelerator and manipulator (STEAM)[J]. Nature Photonics, 12, 336-342(2018).

    [16] Huang W R, Fallahi A, Wu X J et al. Terahertz-driven, all-optical electron Gun[J]. Optica, 3, 1209-1212(2016).

    [17] Salikhov R, Ilyakov I, Körber L et al. Coupling of terahertz light with nanometre-wavelength magnon modes via spin-orbit torque[J]. Nature Physics, 19, 529-535(2023).

    [18] Yang C J, Li J W, Fiebig M et al. Terahertz control of many-body dynamics in quantum materials[J]. Nature Reviews Materials, 8, 518-532(2023).

    [19] Dong T, Zhang S J, Wang N L. Recent development of ultrafast optical characterizations for quantum materials[J]. Advanced Materials, 35, 21110068(2023).

    [20] Li Q, Stoica V A, Paściak M et al. Subterahertz collective dynamics of polar vortices[J]. Nature, 592, 376-380(2021).

    [21] Liu Z, Vaswani C, Yang X et al. Ultrafast control of excitonic rashba fine structure by phonon coherence in the metal halide perovskite CH3NH3PbI3[J]. Physical Review Letters, 124, 157401(2020).

    [22] Li X, Qiu T, Zhang J H et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3[J]. Science, 364, 1079-1082(2019).

    [23] Greschner A A, Ropagnol X, Kort M et al. Room-temperature and selective triggering of supramolecular DNA assembly/disassembly by nonionizing radiation[J]. Journal of the American Chemical Society, 141, 3456-3469(2019).

    [24] Tachizaki T, Sakaguchi R, Terada S et al. Terahertz pulse-altered gene networks in human induced pluripotent stem cells[J]. Optics Letters, 45, 6078-6081(2020).

    [25] Berry C W, Wang N, Hashemi M R et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes[J]. Nature Communications, 4, 1622(2013).

    [26] Beaurepaire E, Merle J C, Daunois A et al. Ultrafast spin dynamics in ferromagnetic nickel[J]. Physical Review Letters, 76, 4250-4253(1996).

    [27] Battiato M, Carva K, Oppeneer P M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization[J]. Physical Review Letters, 105, 027203(2010).

    [28] Kampfrath T, Battiato M, Maldonado P et al. Terahertz spin current pulses controlled by magnetic heterostructures[J]. Nature Nanotechnology, 8, 256-260(2013).

    [29] Jin Z M, Guo Y Y, Ji B Y et al. Development of ultrafast spin-based terahertz photonics(invited)[J]. Acta Photonica Sinica, 51, 0751410(2022).

    [30] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016).

    [31] Kong D Y, Wu X J, Wang B et al. Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations[J]. Advanced Optical Materials, 7, 1900487(2019).

    [32] Wang B, Shan S Y, Wu X J et al. Picosecond nonlinear spintronic dynamics investigated by terahertz emission spectroscopy[J]. Applied Physics Letters, 115, 121104(2019).

    [33] Chen X H, Wang H T, Wang C et al. Efficient generation and arbitrary manipulation of chiral terahertz waves emitted from Bi2Te3-Fe heterostructures[J]. Advanced Photonics Research, 2, 2000099(2021).

    [34] Liu S J, Guo F W, Li P Y et al. Nanoplasmonic-enhanced spintronic terahertz emission[J]. Advanced Materials Interfaces, 9, 2101296(2022).

    [35] Chen X H, Wang H T, Liu H J et al. Generation and control of terahertz spin currents in topology-induced 2D ferromagnetic Fe3GeTe2|Bi2Te3 heterostructures[J]. Advanced Materials, 34, 2106172(2022).

    [36] Liu S J, Lu C H, Fan Z Q et al. Modulated terahertz generation in femtosecond laser plasma filaments by high-field spintronic terahertz pulses[J]. Applied Physics Letters, 120, 172404(2022).

    [37] Li P Y, Liu S J, Liu Z et al. Laser terahertz emission microscopy of nanostructured spintronic emitters[J]. Applied Physics Letters, 120, 201102(2022).

    [38] Cocker T L, Jelic V, Hillenbrand R et al. Nanoscale terahertz scanning probe microscopy[J]. Nature Photonics, 15, 558-569(2021).

    [39] Plankl M, Faria P E,, Mooshammer F et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures[J]. Nature Photonics, 15, 594-600(2021).

    [40] Ye X L, You G J. Terahertz near-field microscopic imaging study of monolayer MoS2 and WS2[J]. Optical Instruments, 44, 63-69(2022).

    [41] Hu X T, Zhou L, Wu X et al. Review on near-field detection technology in the biomedical field[J]. Advanced Photonics Nexus, 2, 044002(2023).

    [42] Eisele M, Cocker T L, Huber M A et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution[J]. Nature Photonics, 8, 841-845(2014).

    [43] Huber M A, Mooshammer F, Plankl M et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures[J]. Nature Nanotechnology, 12, 207-211(2017).

    [44] Klarskov P, Kim H, Colvin V L et al. Nanoscale laser terahertz emission microscopy[J]. ACS Photonics, 4, 2676-2680(2017).

    [45] Pizzuto A, Ma P C, Mittleman D M. Near-field terahertz nonlinear optics with blue light[J]. Light: Science & Applications, 12, 96(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Wang, Mingcong Dai, Yihang Ma, Youwei Wang, Zijian Zhang, Jiahua Cai, Peng Chen, Caihua Wan, Xiufeng Han, Xiaojun Wu. Spintronic Terahertz Emission Spectroscopy Based on Ultrafast Terahertz Scattering Scanning Near-Field Optical Microscope (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0325001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OPTOELECTRONICS

    Received: Nov. 6, 2023

    Accepted: Nov. 15, 2023

    Published Online: Feb. 27, 2024

    The Author Email: Wu Xiaojun (xiaojunwu@buaa.edu.cn)

    DOI:10.3788/LOP232441

    Topics