Infrared and Laser Engineering, Volume. 52, Issue 11, 20230125(2023)

Numerical simulation of three-layer transmission model for ground-to-satellite turbulent path

Lingjun Shen1,2 and Yingxiong Song1,2
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, China Shanghai University, Shanghai 200072, China
  • 2Shanghai Institute for Advanced Communication and Data Science, Shanghai 200072, China
  • show less
    Figures & Tables(15)
    Propagation geometry for a random phase screen[14]
    Model of atmospheric turbulence in ground-satellite link
    The amplitude profile of the transmitting beam at waist spot
    Kolmogorov turbulent phase screens with different low frequency compensation
    10/3 Non-Kolmogorov turbulent phase screens with different low frequency compensation
    Comparison of phase structure functions in turbulence simulation
    Mutual coherence factor with different layers
    Simulation results of phase screen simulations corresponding to three atmospheres without harmonic compensation. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Simulation results of phase screen simulations corresponding to three atmospheres with harmonic compensation. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Comparison of phase structure functions in turbulence simulation
    The amplitude profile of the transmitting beam at waist spot. (a)-(c) Kolmogorov; (d)-(f) Non-Kolmogorov
    Mutual coherence factors at the observation plane
    • Table 1. Simulation parameters

      View table
      View in Article

      Table 1. Simulation parameters

      ParametersNotionValue
      Wavelength of Gauss beam$ \lambda $0.5 μm
      Gauss beam radius${{w} }_{0}$0.05 m
      Zenith angle$ \theta $
      Outer scale${{L} }_{0}$50 m
      Inner scale${{l} }_{0}$0.001 m
      Turbulence model${\rm{HV}}5/7$${\rm{HV}}5/7$
      Transmitter grid spacing$ {\delta }_{t} $0.0035 m
      Receiver grid spacing$ {\delta }_{n} $0.005 m
      Sample points$ N $512
      Scaling factor$ {\alpha }_{j} $0
      Diameter of the observation aperture$ {D}_{2} $0.5 m
    • Table 2. Comparison of theoretical and simulation errors of mutual coherence factor

      View table
      View in Article

      Table 2. Comparison of theoretical and simulation errors of mutual coherence factor

      Number of layers2361121
      Mean squared error0.14716.87×10−43.43×10−53.38×10−53.15×10−5
    • Table 3. Parameters of each phase screen

      View table
      View in Article

      Table 3. Parameters of each phase screen

      Atmospheric layerTurbulence intensity $ {C}_{n}^{2}/{{\rm{m}}}^{-2/3} $Non-Kolmogorov spectral index $ \alpha $Kolmogorov spectral index $ \alpha $
      Boundary$ 9.99\times {10}^{-16} $11/311/3
      Troposphere$ 2.01\times {10}^{-17} $3.511/3
      Stratosphere$ 7.51\times {10}^{-18} $3.311/3
    Tools

    Get Citation

    Copy Citation Text

    Lingjun Shen, Yingxiong Song. Numerical simulation of three-layer transmission model for ground-to-satellite turbulent path[J]. Infrared and Laser Engineering, 2023, 52(11): 20230125

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 9, 2023

    Accepted: --

    Published Online: Jan. 8, 2024

    The Author Email:

    DOI:10.3788/IRLA20230125

    Topics