Optics and Precision Engineering, Volume. 32, Issue 2, 171(2024)
Design and optimization of cryogenic installation structure for gratings of Long-wave Infrared Spatial Heterodyne Interferometer
[1] [1] 冯玉涛, 李娟, 赵增亮, 等. 大气风场探测星载干涉光谱技术进展综述[J]. 上海航天, 2017, 34(3): 14-26.FENGY T, LIJ, ZHAOZ L, et al. Development of interferometric spectroscopy for atmosphere wind observations based on satellite[J]. Aerospace Shanghai, 2017, 34(3): 14-26.(in Chinese)
[2] [2] 肖旸, 冯玉涛, 文镇清, 等. 中高层大气风场探测多普勒差分干涉技术(特邀)[J]. 光子学报, 2022, 51(8): 0851516.XIAOY, FENGY T, WENZ Q, et al. Doppler asymmetric spatial heterodyne interferometry for wind measurement in middle and upper atmosphere(invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851516.(in Chinese)
[3] B W SMITH, J M HARLANDER. Imaging Spatial Heterodyne Spectroscopy: Theory and Practice, 925-931(1999).
[4] F L ROESLER, J M HARLANDER. Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning, 234(1990).
[5] B LAUBSCHER, B W SMITH, B J COOKE et al. Infrared imaging spatial heterodyne spectrometer (IRISHS) experiment effort, 194-205(1999).
[6] D D BABCOCK. Spatial heterodyne spectroscopy for long-wave infrared: first measurements of broadband spectra. Optical Engineering, 48, 105602(2009).
[7] B SOLHEIM, S BROWN, C SIORIS et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement. Atmosphere-Ocean, 53, 50-57(2015).
[8] [8] 刘祥意, 张景旭, 乔兵, 等. 应用于冷光学组件的透镜支撑技术研究[J]. 光学 精密工程, 2017, 25(7): 1850.LIUX Y, ZHANGJ X, QIAOB, et al. Research on supporting technology of lens applied in cold optics assembly[J]. Opt. Precision Eng., 2017, 25(7): 1850.(in Chinese)
[9] Y F ZHANG, Y T FENG, D FU et al. Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy. Chinese Physics B, 29, 298-303(2020).
[10] [10] 周冠, 李立波, 傅頔, 等. 多普勒差分干涉仪干涉图畸变对相位反演精度影响分析[J]. 光子学报, 2022, 51(6): 0601001.ZHOUG, LIL B, FUD, et al. Analysis of influence of Doppler asymmetric spatial heterodyne interferogram distortion on phase inversion accuracy[J]. Acta Photonica Sinica, 2022, 51(6): 0601001.(in Chinese)
[11] [11] 吴长坤, 张为, 郝亚喆. 可见/近红外实时成像光谱仪控制系统设计[J]. 中国光学, 2022, 15(2): 348-354. doi: 10.37188/co.2021-0119WUC K, ZHANGW, HAOY Z. Design of a control system for a visible/near-infrared real-time imaging spectrometer[J]. Chinese Optics, 2022, 15(2): 348-354.(in Chinese). doi: 10.37188/co.2021-0119
[12] B MOON, W S WANG, C PARK et al. Immersion grating mount design for IGRINS and GMTNIRS, 1372-1379(2012).
[13] J GRANT, T WOOD, I BHATTI et al. Cryogenic optical mounting for short-wave infrared spectrometers, 1341-1358(2014).
[14] [14] 李文雄, 申军立, 张星祥, 等. 低温红外离轴三反准直系统设计[J]. 光学 精密工程, 2023, 31(9): 1285-1294. doi: 10.37188/OPE.20233109.1285LIW X, SHENJ L, ZHANGX X, et al. Design of low temperature infrared off-axis three-mirror collimation system[J]. Opt. Precision Eng., 2023, 31(9): 1285-1294.(in Chinese). doi: 10.37188/OPE.20233109.1285
[15] [15] 沈凯, 何欣, 张星祥. 低温反射镜组件结构设计与支撑特性分析[J]. 红外技术, 2021, 43(12): 1172-1176.SHENK, HEX, ZHANGX X. Structural design and support characteristics analysis of cryogenic mirror assembly[J]. Infrared Technology, 2021, 43(12): 1172-1176.(in Chinese)
[16] W PARK, S KIM, C PARK et al. GMTNIRS: preliminary optical mount design for cryogenic spectrograph, 17, 98(2022).
[17] [17] 葛桓宇, 肖正航, 王跃. 基于热变形补偿的双材料低温镜头支撑结构研究[J]. 航天返回与遥感, 2022, 43(3): 69-76. doi: 10.3969/j.issn.1009-8518.2022.03.008GEH Y, XIAOZ H, WANGY. Research on cryogenic lens support structures based on a Bi-material system for thermal deformation compensation[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(3): 69-76.(in Chinese). doi: 10.3969/j.issn.1009-8518.2022.03.008
[18] B HAN, Y T FENG, Z H ZHANG et al. Spatial heterodyne spectroscopy for long-wave infrared: optical design and laboratory performance, 35(2020).
[19] C R ENGLERT, J M HARLANDER, D D BABCOCK et al. Compression assembly of spatial heterodyne spectroscopy interferometers. Recent Patents on Space Technology, 1, 1-6(2011).
[20] J M HARLANDER, R J REYNOLDS, F L ROESLER et al. Spatial heterodyne spectroscopy: laboratory tests of field-widened, multiple-order, and vacuum ultraviolet systems, 48-59(1992).
[21] [21] 曹玉岩, 王建立, 初宏亮, 等. 大口径光学透镜的双级柔性支撑结构设计[J]. 光学 精密工程, 2021, 29(8): 1867-1880. doi: 10.37188/OPE.20212908.1867CAOY Y, WANGJ L, CHUH L, et al. Design and analysis of bi-flexible mounting structure for large optical lens[J]. Opt. Precision Eng., 2021, 29(8): 1867-1880.(in Chinese). doi: 10.37188/OPE.20212908.1867
[22] [22] 杨勋, 徐抒岩, 马宏财, 等. 径向温度梯度对轻量化反射镜面形精度的影响[J]. 光学 精密工程, 2019, 27(7): 1552-1560. doi: 10.3788/ope.20192707.1552YANGX, XUS Y, MAH C, et al. Influence of radial temperature gradient on surface figure of lightweight reflective mirror[J]. Opt. Precision Eng., 2019, 27(7): 1552-1560.(in Chinese). doi: 10.3788/ope.20192707.1552
[23] [23] 屈金祥, 陆燕. 平面光学镜低温温度场和热变形分析方法[J]. 低温与超导, 2008, 36(9): 71-75. doi: 10.3969/j.issn.1001-7100.2008.09.015QUJ X, LUY. Analyzing methods of cryogenic temperature distribution and thermal distortion for flat reflectors[J]. Cryogenics and Superconductivity, 2008, 36(9): 71-75.(in Chinese). doi: 10.3969/j.issn.1001-7100.2008.09.015
[24] [24] 董得义, 李志来, 李锐钢, 等. 胶层固化对反射镜面形影响的仿真与试验[J]. 光学 精密工程, 2014, 22(10): 2698-2707. doi: 10.3788/ope.20142210.2698DONGD Y, LIZ L, LIR G, et al. Simulation and experiment of influence of adhesive curing on reflective mirror surface[J]. Opt. Precision Eng., 2014, 22(10): 2698-2707.(in Chinese). doi: 10.3788/ope.20142210.2698
[25] V L GENBERG, G MICHELS, G BISSON. Freeform surfaces in STOP analysis, 1, 17(2021).
Get Citation
Copy Citation Text
Yang WU, Yutao FENG, Bin HAN, Junqiang WU, Jian SUN. Design and optimization of cryogenic installation structure for gratings of Long-wave Infrared Spatial Heterodyne Interferometer[J]. Optics and Precision Engineering, 2024, 32(2): 171
Category:
Received: Jun. 5, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: FENG Yutao (fytciom@126.com)