Journal of Innovative Optical Health Sciences, Volume. 14, Issue 3, 2140012(2021)
In vivo evaluation of laser-induced choroidal neovascularization in rats simultaneously using optical coherence tomography and photoacoustic microscopy
[1] [1] K. Attebo, P. Mitchell, W. Smith, "Visual acuity and the causes of visual loss in Australia: The Bluemountains Eye Study," Ophthalmology 103, 357–364 (1996).
[2] [2] D. S. Friedman, B. J. O'Colmain, B. Munoz et al., "Prevalence of agerelated macular degeneration in the United States," Arch Ophthalmol. 122, 564–572 (2004).
[3] [3] M. R. VanNewkirk, M. B. Nanjan, J. J. Wang, P. Mitchell, H. R. Taylor, C. A. McCarty, "The prevalence of age-related maculopathy: The Visual Impairment Project," Ophthalmology 107, 1593– 1600 (2000).
[4] [4] C. Augood, A. Fletcher, G. Bentham, U. Chakravarthy, P. T. de Jong, M. Rahu, J. Seland, G. Soubrane, L. Tomazzoli, F. Topouzis, J. Vioque, I. Young, "Methods for a population-based study of the prevalence of and risk factors for age-related maculopathy and macular degeneration in elderly European populations: The EUREYE study," Ophthalmic Epidemiol. 11, 117–129 (2004).
[5] [5] J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, A. P. Adamis, "Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies," SurvOphthalmol. 48, 257–293 (2003).
[6] [6] S. H. Zhao, S. Z. He, "Study on the experimental model of krypton laser-induced choroidal neovascularization in rats," Zhonghua Yan Ke Za Zhi. 39, 298–302 (2003).
[7] [7] H. Y. Hou, H. L. Liang, Y. S. Wang, "Bone marrowderived cells in neovascular age-related macular degeneration: Contribution and potential application," Ophthalmic Res. 45, 1–4 (2011).
[8] [8] I. Semkova, S. Fauser, A. Lappas, N. Smyth, N. Kociok, B. Kirchhof, M. Paulsson, V. Poulaki, A. M. Joussen, "Overexpression of FasL in retinal pigment epithelial cells reduces choroidal neovascularization," FASEB J. 20, 1689–1691 (2006).
[9] [9] Z. H. Yang, J. W. Shang, C. L. Liu, J. Zhang, F. Hou, Y. M. Liang, "Intraoperative imaging of oral-maxillofacial lesions using optical coherence tomography," J. Innov. Opt. Health Sci. 13(2), 2050010 (2020).
[10] [10] D. Ferrara, N. K. Waheed, J. S. Duker, "Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies," Prog. Retinal Eye Res. 52, 130–155 (2016).
[11] [11] R. X. Chen, L. Yao, K. Y. Liu, T. T. Cao, H. K. Li and P. Li, "Improvement of decorrelation-based OCT angiography by an adaptive spatial-temporal kernel in monitoring stimulus-evoked hemodynamic responses," IEEE Trans. Med. Imaging. 39, 4286– 4296 (2020), doi: 10.1109/TMI.2020.3016334.
[12] [12] L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu and P. Li, "SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model," IEEE Trans. Med. Imag. 38, 2695–2704 (2019).
[13] [13] W. Qiao, Z. J. Chen, "All-optically integrated photoacoustic and optical coherence tomography: A review," J. Innov. Opt. Health Sci. 10, 1730006 (2017).
[14] [14] J. L. Edelman, M. R. Castro, "Quantitative image analysis of laser-induced choroidal neovascularization in rat," Exp. Eye Res. 71, 523–533 (2000).
[15] [15] T. Fukuchi, K. Takahashi, K. Shou, M. Matsumura, "Optical coherence tomography (OCT) findings in normal retina and laser induced choroidal neovascularization in rats," Graefes Arch. Clin. Exp. Ophthalmol. 239, 41–46 (2001).
[16] [16] J. Jiao, B. Mo, H. Wei, Y. R. Jiang, "Comparative study of laser-induced choroidal neovascularization in rats by paraffin sections, frozen sections and highresolution optical coherence tomography," Graefes Arch. Clin. Exp. Ophthalmol. 251, 301–307 (2013).
[17] [17] T. Liu, L. Hui, Y. S. Wang, J. Q. Guo, R. Li, J. B. Su, J. K. Chen, X. M. Xin, W. H. Li, "In-vivo investigation of laser-induced choroidal neovascularization in rat using spectral-domain optical coherence tomography (SD-OCT)," Graefes Arch Clin Exp Ophthalmol. 251, 1293–1301 (2013).
[18] [18] L. Li, C. X. Dai, C. Q. Zhou, "Fast subcellular optical coherence photoacousticmicroscopy for pigment cell imaging," Opt. Lett. 40, 4448–4451 (2015).
[19] [19] Q. Wei, T. Liu, S. L. Jiao, H. F. Zhang, "Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy," J. Mod. Optic. 58, 1997–2001 (2011).
[20] [20] X. J. Liu, T. Liu, R. Wen, Y. W. Li, C. A. Puliafito, H. F. Zhang, S. L. Jiao, "Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging," Opt. Lett. 40, 1370–1373 (2015).
[21] [21] V. P. Nguyen, Y. X. Li, M. Aaberg, W. Zhang, X. D. Wang, Y. M. Paulus, "In vivo 3D imaging of retinal neovascularization using multimodal photoacoustic microscopy and optical coherence tomography imaging," J. Imaging 4, 1–18 (2018).
[22] [22] M. C. Xiao, C. X. Dai, L. Li, C. Q. Zhou, F. H. Wang, "Evaluation of retinal pigment epithelium and choroidal neovascularization in rats using laserscanning optical-resolution photoacoustic microscopy," Ophthalmic Res. 63, 271–283 (2020).
Get Citation
Copy Citation Text
Fengxian Du, Lei Gao, Lin Li, Qian Li, Fenghua Wang, Chuanqing Zhou, Cuixia Dai. In vivo evaluation of laser-induced choroidal neovascularization in rats simultaneously using optical coherence tomography and photoacoustic microscopy[J]. Journal of Innovative Optical Health Sciences, 2021, 14(3): 2140012
Received: Sep. 30, 2020
Accepted: Jan. 26, 2021
Published Online: Aug. 6, 2021
The Author Email: Zhou Chuanqing (zhoucq@sjtu.edu.cn)