Ultrafast Science, Volume. 3, Issue 1, 0039(2023)

Terawatt-Class Few-Cycle Short-Wave Infrared Vortex Laser

Renyu Feng1,2、†, Junyu Qian1、†, Yujie Peng1、*, Yanyan Li1, Wenkai Li1, Yuxin Leng1, and Ruxin Li1,3
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • 3School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China.
  • show less
    References(48)

    [1] [1] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45(11):8185–8189.

    [2] [2] Indebetouw G. Optical vortices and their propagation. J Mod Opt. 1993;40(1):73–87.

    [3] [3] Soskin MS, Vasnetsov MV. Chapter 4—Singular optics. In: Wolf E, editor. Progress in optics. Netherlands: Elsevier; 2001, p. 219–276.

    [4] [4] Polynkin P, Ament C, Moloney JV. Self-focusing of ultraintense femtosecond optical vortices in air. Phys Rev Lett. 2013;111(2): Article 023901.

    [5] [5] Mendis BG. On the electron vortex beam wavefunction within a crystal. Ultramicroscopy. 2015;157:1–11.

    [6] [6] Zhang X, Shen B, Zhang L, Xu J, Wang X, Wang W, Yi L, Shi Y. Proton acceleration in underdense plasma by ultraintense Laguerre–Gaussian laser pulse. New J Phys. 2014;16(12): Article 123051.

    [7] [7] Stillhart M, Schneider A, Günter P. Optical properties of 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate crystals at terahertz frequencies. J Opt Soc Am B. 2008;25(11):1914–1919.

    [8] [8] Wang H, Song Q, Cai Y, Lin Q, Lu X, Shangguan H, Ai Y, Xu S. Recent advances in generation of terahertz vortex beams and their applications*. Chinese Physics B. 2020;29(9): Article 097404.

    [9] [9] Hernández-García C, Picón A, San Román J, Plaja L. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys Rev Lett. 2013;111(8): Article 083602.

    [10] [10] Gauthier D, Ribič PR, Adhikary G, Camper A, Chappuis C, Cucini R, DiMauro LF, Dovillaire G, Frassetto F, Géneaux R, et al. Tunable orbital angular momentum in high-harmonic generation. Nat Commun. 2017;8(1):14971.

    [12] [12] Chen ZK, Zheng SQ, Lu XM, Wang XL, Cai Y, Wang CY, Zheng MJ, Ai YX, Leng YX, Xu SX, et al. Forty-five terawatt vortex ultrashort laser pulses from a chirped-pulse amplification system. High Power Laser Sci Eng. 2022;10.

    [13] [13] Rego L, Dorney KM, Brooks NJ, Nguyen QL, Liao CT, San Roman J, Couch DE, Liu A, Pisanty E, Lewenstein M, et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science. 2019;364(6447):1253-+.

    [14] [14] Geneaux R, Camper A, Auguste T, Gobert O, Caillat J, Taieb R, Ruchon T. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nat Commun. 2016;7(1):12583.

    [16] [16] Takahashi EJ, Kanai T, Ishikawa KL, Nabekawa Y, Midorikawa K. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media. Phys Rev Lett. 2008;101(25): Article 253901.

    [17] [17] Kerber RM, Fitzgerald JM, Oh SS, Reiter DE, Hess O. Orbital angular momentum dichroism in nanoantennas. Commun Phys. 2018;1:87.

    [18] [18] Zhou YY, Alam MZ, Karimi M, Upham J, Reshef O, Liu C, Willner AE, Boyd RW. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat Commun. 2020;11(1):2180.

    [19] [19] Plansinis BW, Donaldson WR, Agrawal GP. What is the temporal analog of reflection and refraction of optical beams? Phys Rev Lett. 2015;115(18):183901.

    [20] [20] Vezzoli S, Bruno V, DeVault C, Roger T, Shalaev VM, Boltasseva A, Ferrera M, Clerici M, Dubietis A, Faccio D. Optical time reversal from time-dependent epsilon-near-zero media. Phys Rev Lett. 2018;120(4):043902.

    [26] [26] Yamane K, Toda Y, Morita R. Ultrashort optical-vortex pulse generation in few-cycle regime. Opt Express. 2012;20(17):18986–18993.

    [29] [29] Nagy T, Hadrich S, Simon P, Blumenstein A, Walther N, Klas R, Buldt J, Stark H, Breitkopf S, Jojart P, et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica. 2019;6(11):1423–1424.

    [30] [30] Shumakova V, Malevich P, Ališauskas S, Voronin A, Zheltikov AM, Faccio D, Kartashov D, Baltuška A, Pugžlys A. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat Commun. 2016;7(1):12877.

    [31] [31] Seidel M, Brons J, Arisholm G, Fritsch K, Pervak V, Pronin O. Efficient high-power ultrashort pulse compression in self-defocusing bulk media. Sci Rep. 2017;7(1):1410.

    [32] [32] Cao HB, Nagymihaly RS, Kalashnikov M. Relativistic near-single-cycle optical vortex pulses from noble gas-filled multipass cells. Opt Lett. 2020;45(12):3240–3243.

    [33] [33] Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P. Nonlinear pulse compression in a multi-pass cell. Opt Lett. 2016;41(19):4511–4514.

    [36] [36] Chen BH, Huang HW, Ye RS, Lu CH, Chen K, Yang SD. Vortex beam assisted energy up-scaling for multiple-plate compression with a single spiral phase plate. Opt Lett. 2022;47(17):4423–4426.

    [37] [37] Li Y, Chen Y, Li W, Wang P, Shao B, Peng Y, Leng Y. Accurate characterization of mid-infrared ultrashort pulse based on second-harmonic-generation frequency-resolved optical gating. Opt Laser Technol. 2019;120: Article 105671.

    [38] [38] Denisenko V, Shvedov V, Desyatnikov AS, Neshev DN, Krolikowski W, Volyar A, Soskin M, Kivshar YS. Determination of topological charges of polychromatic optical vortices. Opt Express. 2009;17(26):23374–23379.

    [40] [40] Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt Commun. 2002;207(1):169–175.

    [41] [41] Qiao Z, Kong LC, Xie GQ, Qin ZP, Yuan P, Qian LJ, Xu XD, Xu J, Fan DY. Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser. Opt Lett. 2017;42(13):2547–2550.

    [42] [42] Phillips RL, Andrews LC. Spot size and divergence for LAGUERRE GAUSSIAN beams of any order. Appl Opt. 1983;22(5):643–644.

    [43] [43] Zelmon DE, Small DL, Page R. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm. Appl Opt. 1998;37(21):4933–4935.

    [44] [44] Xu S, Qiu J, Jia T, Li C, Sun H, Xu Z. Femtosecond laser ablation of crystals SiO2 and YAG. Opt Commun. 2007;274(1):163–166.

    [45] [45] Dubietis A, Tamosauskas G, Suminas R, Jukna V, Couairon A. Ultrafast supercontinuum generation in bulk condensed media. Lith J Phys. 2017;57(3):113–157.

    [46] [46] Marburger JH. Self-focusing: theory. Prog Quant Electron. 1975;4:35–110.

    [48] [48] Xu L, Li D, Chang J, Li D, Xi T, Hao Z. Powerful supercontinuum vortices generated by femtosecond vortex beams with thin plates. Photon Res. 2022;10(3):802–809.

    Tools

    Get Citation

    Copy Citation Text

    Renyu Feng, Junyu Qian, Yujie Peng, Yanyan Li, Wenkai Li, Yuxin Leng, Ruxin Li. Terawatt-Class Few-Cycle Short-Wave Infrared Vortex Laser[J]. Ultrafast Science, 2023, 3(1): 0039

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 14, 2023

    Accepted: Oct. 4, 2023

    Published Online: May. 21, 2024

    The Author Email: Peng Yujie (yjpeng@siom.ac.cn)

    DOI:10.34133/ultrafastscience.0039

    Topics