Journal of the Chinese Ceramic Society, Volume. 53, Issue 2, 257(2025)

Co-substitution Strategy to Improve the Luminescence Property of NaLaCaTeO6:Eu3+ Phosphor and Its Application in White Light Emitting Diode

ZHAO Bing1... RU Jingjing1,*, GUO Feiyun2 and GUO Shiying1 |Show fewer author(s)
Author Affiliations
  • 1Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University,Ningde 352100, Fujian, China
  • 2College of Chemistry, Fuzhou University, Fuzhou 350108, China
  • show less
    References(42)

    [2] [2] RAJKUMAR G, PONNUSAMY V, KANMANI G V, et al. Ternary type BaY2ZnO5: Eu3+ deep-red phosphor for possible latent fingerprint, security ink and WLED applications[J]. Ceram Int, 2022, 48(1): 10–21.

    [4] [4] LI J, WANG Z S, XIE X J, et al. Structural and optical properties of Cd2MgTeO6: Dy3+, Na+ phosphors for potential application in w-LEDs and personal identification[J]. J Alloys Compd, 2024, 981: 173620.

    [5] [5] YANG Z Y, LYU Z Y, SUN D S, et al. Bright white light emission from lanthanide oxide LaGdO3 for LED lighting by Bi3+ to Eu3+ energy transfer[J]. Dalton Trans, 2024, 53(16): 6941–6949.

    [6] [6] HE C, TAKEDA T, HUANG Z H, et al. Powder synthesis and luminescence of a novel yellow-emitting Ba5Si11Al7N25: Eu2+ phosphor discovered by a single-particle-diagnosis approach for warm w-LEDs[J]. Chem Eng J, 2023, 455: 140932.

    [7] [7] LIAO H X, ZHAO M, MOLOKEEV M S, et al. Learning from a mineral structure toward an ultra-narrow-band blue-emitting silicate phosphor RbNa3(Li3SiO4)4: Eu2+[J]. Angew Chem Int Ed Engl, 2018, 57(36): 11728–11731.

    [8] [8] WANG H H, LIU Y J, ZHU X D, et al. Preparation of CaAlSiN3: Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications[J]. Ceram Int, 2020, 46(14): 23035–23040.

    [9] [9] SETO T, WANG Y H, WU J P, et al. Progress of M2Si5N8: Eu series in industrial LED phosphors[J]. J Mater Chem C, 2023, 11(20): 6512–6527.

    [10] [10] LI C, ZHENG H W, WEI H W, et al. A color tunable and white light emitting Ca2Si5N8: Ce3+, Eu2+ phosphor via efficient energy transfer for near-UV white LEDs[J]. Dalton Trans, 2018, 47(19): 6860–6867.

    [11] [11] OSBORNE R A, CHEREPY N J, SEELEY Z M, et al. New red phosphor ceramic K2SiF6: Mn4+[J]. Opt Mater, 2020, 107: 110140.

    [12] [12] KONG J J, WANG Y J, TONG W M, et al. Highly efficient cyan-red emission in self-activated Sr9In(VO4)7: xEu3+ phosphors for applications in W-LEDs and optical thermometry[J]. J Alloys Compd, 2024, 983: 173936.

    [13] [13] AYOUB I, MUSHTAQ U, YAGOUB M Y A, et al. Structural, optical and photoluminescence properties of BaLa2ZnO5: Eu3+ phosphor: A prospective red-emitting phosphor for LED applications[J]. Opt Mater, 2024, 148: 114797.

    [14] [14] RU J J, ZENG F, LIU Y J, et al. The performance tuning of NaCaTiTaO6:Dy3+, Eu3+ phosphor by employing the co-doping strategy for white LED application[J]. Opt Mater, 2023, 144: 114345.

    [15] [15] WU Z J, LI L, TIAN G, et al. High-sensitivity and wide-temperature-range dual-mode optical thermometry under dual-wavelength excitation in a novel double perovskite tellurate oxide[J]. Dalton Trans, 2021, 50(33): 11412–11421.

    [17] [17] ZHAO Y X, LIU L, ZHOU L, et al. New double perovskite Cd2MgTeO6: Sm3+, Na+ tellurate phosphors with abnormal thermal quenching for applications in white and plant growth lighting[J]. Ceram Int, 2023, 49(14): 22902–22912.

    [19] [19] LIANG J Y, ZHAO S C, YUAN X X, et al. A novel double perovskite tellurate Eu3+-doped Sr2MgTeO6 red-emitting phosphor with high thermal stability[J]. Opt Laser Technol, 2018, 101: 451–456.

    [20] [20] HE J Y, GAO Z W, LIU S H, et al. New Eu3+-activated bismuthate tellurate LiSrBiTeO6 red-emitting phosphor for InGaN-based w-LEDs[J]. J Lumin, 2018, 202: 7–12.

    [21] [21] HAN B, LIU B B, DAI Y Z, et al. Synthesis and luminescence properties of Sm3+ doped NaKLaMO5 (M=Nb, Ta) red-emitting phosphors[J]. Mater Res Bull, 2020, 121: 110612.

    [22] [22] FAN F Y, ZHAO L, SHANG Y F, et al. Thermally stable double-perovskite Ca3TeO6: Eu3+ red-emitting phosphors with high color purity[J]. J Lumin, 2019, 211: 14–19.

    [23] [23] ZHANG G, ZHAO L, FAN F Y, et al. Near UV-pumped yellow-emitting Ca3TeO6: Dy3+ phosphor for white light-emitting diodes[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 223: 117343.

    [24] [24] SONG F M, ZHANG G G. Double-perovskite Ca3TeO6: Sm3+, Na+ orange–red-emitting phosphors for UV-based white light-emitting diodes[J]. J Mater Sci Mater Electron, 2021, 32(11): 14128–14136.

    [25] [25] SUN X K, HUANG Z Z, FU X H, et al. Generation of warm white light by doping Sm3+ in Ca3TeO6: Dy3+ fluorescent powders[J]. Ceram Int, 2020, 46(9): 14252–14256.

    [26] [26] XIA Z G, MA C G, MOLOKEEV M S, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor[J]. J Am Chem Soc, 2015, 137(39): 12494–12497.

    [27] [27] XIA Z G, POEPPELMEIER K R. Chemistry-inspired adaptable framework structures[J]. Acc Chem Res, 2017, 50(5): 1222–1230.

    [28] [28] HU T, GAO Y, MOLOKEEV M, et al. Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing[J]. Sci China Mater, 2019, 62(12): 1807–1814.

    [29] [29] LI Z Y, FAN N S, ZHANG X H, et al. Co-substitution strategy to achieve a novel efficient deep-red-emitting SrKYTeO6: Mn4+ phosphor for plant cultivation lighting[J]. J Alloys Compd, 2022, 906: 164243.

    [30] [30] LI L, ZHU Y L, ZHOU X H, et al. Visible-light excited luminescent thermometer based on single lanthanide organic frameworks[J]. Adv Funct Materials, 2016, 26(47): 8677–8684.

    [31] [31] XIE M L, HE C, FANG M H, et al. Improvement of luminescence performance of single-phase white-emitting Na3Gd(PO4)2: Dy3+ phosphor by co-doping with Eu3+[J]. Polyhedron, 2022, 222: 115860.

    [32] [32] MAO Q N, SHEN B, YANG T, et al. A double perovskite-based red-emitting phosphor with robust thermal stability for warm WLEDs[J]. Ceram Int, 2020, 46(11): 19328–19334.

    [33] [33] SUN Q, WANG S Y, DEVAKUMAR B, et al. Double perovskite Ca2LuTaO6: Eu3+ red-emitting phosphors: Synthesis, structure and photoluminescence characteristics[J]. J Alloys Compd, 2019, 804: 230–236.

    [34] [34] TANG Q F, YANG T, HUANG H F, et al. A novel near-ultraviolet-light excitable Eu3+-doped Sr2LaTaO6 red phosphor for white-light-emitting diodes[J]. Optik, 2021, 240: 166908.

    [35] [35] HALAPPA P, RAJASHEKAR H M, SHIVAKUMARA C. Synthesis and structural characterization of orange red light emitting Sm3+ activated BiOCl phosphor for WLEDs applications[J]. J Alloys Compd, 2019, 785: 169–177.

    [36] [36] ZHANG Q W, SUN H Q, KUANG T, et al. (K0.5Na0.5)NbO3: Eu3+/Bi3+: A novel, highly efficient, red light-emitting material with superior water resistance behavior[J]. RSC Adv, 2015, 5(6): 4707–4715.

    [37] [37] ZHANG L X, XIE Y, GENG X, et al. Double perovskite Ca2MgTeO6: Eu3+ red-emitting phosphors with high thermal stability for near UV/blue excited white LEDs[J]. J Lumin, 2020, 225: 117365.

    [38] [38] HUA Y B, RAN W G, YU J S. Advantageous occupation of europium(III) in the B site of double-perovskite Ca2BB’O6 (B = Y, Gd, La; B’ = Sb, Nb) frameworks for white-light-emitting diodes[J]. ACS Sustainable Chem Eng, 2021, 9(23): 7960–7972.

    [39] [39] NAYAK P, NANDA S S, PATTNAIK S, et al. Yb-Mn dimer tailored upconversion luminescence in CaWO4: Er3+/Yb3+/Mn2+ green phosphors for thermometry and optical heating[J]. Opt Laser Technol, 2023, 159: 108990.

    [40] [40] XU S, ZHU D Y, WU F G, et al. High quantum efficiency and excellent thermal stability in Eu3+-activated CaY2ZrGaAl3O12 phosphors for wLEDs[J]. Opt Mater, 2024, 150: 115284.

    [41] [41] KONG J Y, SU H R, LI C L, et al. Synthesis and luminescence properties of oxyapatite-type ZnLa4(SiO4)3O: Eu3+ phosphor for high CRI w-LEDs, latent fingerprints, and security ink[J]. Ceram Int, 2023, 49(23): 39329–39341.

    [42] [42] LIN Y F, HE D M, JIANG K Z, et al. A novel red-emitting K5La(MoO4)4: Eu3+ phosphor with a high quantum efficiency for w-LEDs and visualization of latent fingerprints[J]. J Alloys Compd, 2023, 960: 170563.

    [43] [43] XU S, ZHU D Y, GONG D L, et al. Study on the structure and luminescence properties of a novel Li3Sc2(PO4)3: Eu3+ orange-red emission phosphor for wLEDs[J]. Opt Mater, 2023, 143: 114239.

    [44] [44] MA Y Y, LIU R Y, GENG X, et al. Synthesis and spectroscopic analysis of Eu3+-doped tungsten bronze Sr5YTi3Nb7O30 phosphors for w-LED and visualization of latent fingerprint[J]. Ceram Int, 2022, 48(3): 4080–4089.

    [45] [45] FENG J J, CHEN L F, XIE J T, et al. Interrupting the long-range energy migration among Eu3+ by the introduction of unequivalent[NaO8]units to achieve both high quenching concentration and quantum yield in NaY2Ga2InGe2O12[J]. Mater Today Chem, 2024, 36: 101979.

    [46] [46] DAI P P, CAO J, ZHANG X T, et al. Bright and high-color-rendering white light-emitting diode using color-tunable oxychloride and oxyfluoride phosphors[J]. J Phys Chem C, 2016, 120(33): 18713–18720

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Bing, RU Jingjing, GUO Feiyun, GUO Shiying. Co-substitution Strategy to Improve the Luminescence Property of NaLaCaTeO6:Eu3+ Phosphor and Its Application in White Light Emitting Diode[J]. Journal of the Chinese Ceramic Society, 2025, 53(2): 257

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 3, 2024

    Accepted: Feb. 20, 2025

    Published Online: Feb. 20, 2025

    The Author Email: Jingjing RU (jing3032357@163.com)

    DOI:10.14062/j.issn.0454-5648.20240386

    Topics