Chinese Journal of Quantum Electronics, Volume. 41, Issue 1, 113(2024)

Quantum K-means algorithm based on parameterized angle encoding

FENG Weijun, GUO Gongde, and LIN Song*
Author Affiliations
  • College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China
  • show less
    References(33)

    [1] Feynman R P. Simulating physics with computers[J]. International Journal of Theoretical Physic, 21, 467-488(1982).

    [2] Lloyd S, Mohseni M, Rebentrost P. Quantum principal component analysis[J]. Nature Physics, 10, 631-633(2014).

    [3] Deutsch D. Quantum theory, the Church–Turing principle and the universal quantum computer[C], 97-117(1985).

    [4] Deutsch D E. Quantum computational networks[C], 73-90(1989).

    [5] Shor P W. Algorithms for quantum computation: discrete logarithms and factoring[C], 124-134(1994).

    [6] Grover L K. A fast quantum mechanical algorithm for database search[C], 212-219(1996).

    [7] Zhang D B, Xue Z Y, Zhu S L et al. Realizing quantum linear regression with auxiliary qumodes[J]. Physical Review A, 99, 012331(2019).

    [8] Gilyén A, Song Z, Tang E. An improved quantum-inspired algorithm for linear regression[OL]. arXiv, 07268, https://arxiv.org/abs/2009.07268.(2009).

    [9] Sornsaeng A, Dangniam N, Palittapongarnpim P et al. Quantum diffusion map for nonlinear dimensionality reduction[J]. Physical Review A, 104, 052410(2021).

    [10] Duan B J, Yuan J B, Xu J et al. Quantum algorithm and quantum circuit for A-optimal projection: Dimensionality reduction[J]. Physical Review A, 99, 032311(2019).

    [11] Lin J, Bao W S, Zhang S et al. An improved quantum principal component analysis algorithm based on the quantum singular threshold method[J]. Physics Letters A, 383, 2862-2868(2019).

    [12] He C, Li J Z, Liu W Q et al. A low-complexity quantum principal component analysis algorithm[J]. IEEE Transactions on Quantum Engineering, 3, 1-13(2022).

    [13] Chen M H, Guo G D, Lin S. Quantum recommendation algorithm based on Hamming distance[J]. Chinese Journal of Quantum Electronics, 38, 332-340(2021).

    [14] Fan D C, Song Z L, Jon S et al. An improved quantum clustering algorithm with weighted distance based on PSO and research on the prediction of electrical power demand[J]. Journal of Intelligent & Fuzzy Systems, 38, 2359-2367(2020).

    [15] Yu K, Guo G D, Li J et al. Quantum algorithms for similarity measurement based on Euclidean distance[J]. International Journal of Theoretical Physics, 59, 3134-3144(2020).

    [16] Gong C Q, Dong Z Y, Gani A et al. Quantum K-means algorithm based on trusted server in quantum cloud computing[J]. Quantum Information Processing, 20, 1-22(2021).

    [17] Wu Z H, Song T T, Zhang Y B. Quantum K-means algorithm based on Manhattan distance[J]. Quantum Information Processing, 21, 19(2022).

    [18] Khan S U, Awan A J, Vall-Llosera G. K-means clustering on noisy intermediate scale quantum computers[OL]. arXiv, 12183, https://arxiv.org/abs/1909.12183.(1909).

    [19] Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning[OL]. arXiv: 1307, 2013, https://arxiv.org/abs/1307.0411.(0411).

    [20] Kerenidis I, Landman J, Luongo A et al. q-means: A quantum algorithm for unsupervised machine learning[C], 4136-4146(2019).

    [21] Huang Y M, Lei H, Li X Y. A survey on quantum machine learning[J]. Chinese Journal of Computers, 41, 145-163(2018).

    [22] Zang Y M, Zhu S C, Wei Z H et al. A pseudo color coding method for quantum image[J]. Chinese Journal of Quantum Electronics, 39, 343-353(2022).

    [23] Weigold M, Barzen J, Leymann F et al. Expanding data encoding patterns for quantum algorithms[C], 95-101(2021).

    [25] Williams C P[M]. Explorations in Quantum Computing, 83-91(2011).

    [26] Dang Y J, Jiang N, Hu H et al. Image classification based on quantum K-Nearest-Neighbor algorithm[J]. Quantum Information Processing, 17, 239(2018).

    [27] Li P C, Guo J H, Wang B et al. Quantum circuits for calculating the squared sum of the inner product of quantum states and its application[J]. International Journal of Quantum Information, 17, 1950043(2019).

    [28] Zhao J, Zhang Y H, Shao C P et al. Building quantum neural networks based on a swap test[J]. Physical Review A, 100, 012334(2019).

    [29] Li P, Wang B. Quantum neural networks model based on swap test and phase estimation[J]. Neural Networks, 130, 152-164(2020).

    [30] Wang S B, Wang Z M, Li W D et al. Quantum circuits design for evaluating transcendental functions based on a function-value binary expansion method[J]. Quantum Information Processing, 19, 347(2020).

    [32] Xia H Y, Li H S, Zhang H et al. An efficient design of reversible multi-bit quantum comparator via only a single ancillary bit[J]. International Journal of Theoretical Physics, 57, 3727-3744(2018).

    [33] Brassard G, Høyer P, Mosca M et al. Quantum amplitude amplification and estimation[J]. Contemporary Mathematics, 305, 53-74(2002).

    Tools

    Get Citation

    Copy Citation Text

    Weijun FENG, Gongde GUO, Song LIN. Quantum K-means algorithm based on parameterized angle encoding[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 113

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 29, 2022

    Accepted: --

    Published Online: Mar. 19, 2024

    The Author Email: LIN Song (lins95@fjnu.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2024.01.011

    Topics