Optics and Precision Engineering, Volume. 26, Issue 3, 517(2018)

Fabrication and properties of plasmonic hot-electron phototransistor

CHEN Guang-dian*... ZHAI Yu-sheng, LI Yu-pei and WANG Qi-long |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(20)

    [1] [1] KHAN M A, SHATALOV M, MARUSKA H P, et al.. III-nitride UV devices[J]. Japanese Journal of Applied Physics, 2005, 44(10): 7191-7206.

    [2] [2] KEIS K, VAYSSIERES L, LINDQUIST S E, et al.. Nanostructured ZnO electrodes for photovoltaic applications[J]. Nanostructured Materials, 1999, 12(1-4): 487-490.

    [3] [3] ZHOU J, GU Y D, HU Y F, et al.. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J]. Applied Physics Letters, 2009, 94(19): 191103.

    [4] [4] FANG Y R, JIAO Y, XIONG K L, et al.. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures[J]. Nano Letters, 2015, 15(6): 4059-4065.

    [5] [5] BRONGERSMA M L, HALAS N J, NORDLANDER P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 2015, 10(1): 25-34.

    [6] [6] ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213.

    [7] [7] SHOKRI KOJORI H, YUN J H, PAIK Y, et al.. Plasmon field effect transistor for plasmon to electric conversion and amplification[J]. Nano Letters, 2016, 16(1): 250-254.

    [9] [9] MUBEEN S, LEE J, LEE W R, et al.. On the plasmonic photovoltaic[J]. ACS Nano, 2014, 8(6): 6066-6073.

    [10] [10] CLAVERO C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2): 95-103.

    [11] [11] KNIGHT M W, SOBHANI H, NORDLANDER P, et al.. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704.

    [12] [12] SIL D, GILROY K D, NIAUX A, et al.. Seeing is believing: hot electron based gold nanoplasmonic optical hydrogen sensor[J]. ACS Nano, 2014, 8(8): 7755-7762.

    [13] [13] CUI J B, LI Y J, LIU L, et al.. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions[J]. Nano Letters, 2015, 15(10): 6295-6301.

    [14] [14] PESCAGLINI A, MARTíN A, CAMMI D, et al.. Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection[J]. Nano Letters, 2014, 14(11): 6202-6209.

    [15] [15] ZHAN Y H, WU K, ZHANG CH, et al.. Infrared hot-carrier photodetection based on planar perfect absorber[J]. Optics Letters, 2015, 40(18): 4261-4264.

    [17] [17] LI W, VALENTINE J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14(6): 3510-3514.

    [18] [18] FANG Y R, JIAO Y, XIONG K L, et al.. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures[J]. Nano Letters, 2015, 15(6): 4059-4065.

    [19] [19] WILLETS K A, VAN DUYNE R P. Localized surface Plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58: 267-297.

    [20] [20] LIU K W, SAKURAI M, LIAO M Y, et al.. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles[J]. The Journal of Physical Chemistry C, 2010, 114(46): 19835-19839.

    CLP Journals

    [1] JI Ji-tao, ZHAI Yu-sheng, WU Zhi-peng, MA Xiang-yu, MU Hui-hui, WANG Qi-long. Detection of surface plasmons based on periodic grating structure[J]. Optics and Precision Engineering, 2020, 28(3): 526

    Tools

    Get Citation

    Copy Citation Text

    CHEN Guang-dian, ZHAI Yu-sheng, LI Yu-pei, WANG Qi-long. Fabrication and properties of plasmonic hot-electron phototransistor[J]. Optics and Precision Engineering, 2018, 26(3): 517

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 28, 2017

    Accepted: --

    Published Online: Apr. 25, 2018

    The Author Email: Guang-dian CHEN (gd_chen@seu.edu.cn)

    DOI:10.3788/ope.20182603.0517

    Topics