Infrared and Laser Engineering, Volume. 50, Issue 9, 20210445(2021)

Research progress on technologies and applications of geometric coordinate transformation of vortex beam (Invited)

Zhensong Wan, Chaoyang Wang, Qiang Liu, and Xing Fu
Author Affiliations
  • Key Laboratory of Photonic Control Technology of Ministry of Education, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    References(83)

    [1] [1] Webb W T, Hanzo L. Modern Quadrature Amplitude Modulation: Principles Applications f Fixed Wireless Channels: One[M]. US: IEEE PressJohn Wiley, 1994.

    [2] [2] Mukherjee B. Optical WDM wks[M]. Berlin: Springer Science & Business Media, 2006.

    [3] [3] Hanzo L, Ng S X, Keller T, et al. Quadrature Amplitude Modulation[M]. Chichester, UK: Wiley, 2004.

    [4] H Rubinsztein-Dunlop, A Forbes, M V Berry, et al. Roadmap on structured light. Journal of Optics, 19, 013001(2016).

    [5] A Forbes, M Oliveira, M R Dennis. Structured light. Nature Photonics, 15, 253-262(2021).

    [6] M W Beijersbergen, L Allen, H E L O Veen, et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 96, 123-132(1993).

    [7] S J Enk, G Nienhuis. Eigenfunction description of laser beams and orbital angular momentum of light. Optics Communications, 94, 147-158(1992).

    [8] L Allen, M W Beijersbergen, R Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185(1992).

    [9] Y Shen, X Wang, Z Xie, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications, 8, 90(2019).

    [10] A E Willner, H Huang, Y Yan, et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 7, 66-106(2015).

    [11] J Geng. Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3, 128-160(2011).

    [12] A Mair, A Vaziri, G Weihs, et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [13] E Otte, I Nape, C Rosales-Guzmán, et al. High-dimensional cryptography with spatial modes of light: tutorial. Journal of the Optical Society of America B, 37, A309-A323(2020).

    [14] X Fang, H Ren, M Gu. Orbital angular momentum holography for high-security encryption. Nature Photonics, 14, 102-108(2020).

    [15] M Erhard, R Fickler, M Krenn, et al. Twisted photons: new quantum perspectives in high dimensions. Light: Science & Applications, 7, 17146(2018).

    [16] J Wang. Advances in communications using optical vortices. Photonics Research, 4, B14-B28(2016).

    [17] [17] Bozinovic N, Yue Y, Ren Y, et al. bital angular momentum (OAM) based mode division multiplexing (MDM) over a Kmlength fiber [C]Optical Society of America, 2012: Th.3.C.6.

    [18] N Bozinovic, Y Yue, Y Ren, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [19] B Ndagano, I Nape, M A Cox, et al. Creation and detection of vector vortex modes for classical and quantum communication. Journal of Lightwave Technology, 36, 292-301(2018).

    [20] R Chen, H Zhou, M Moretti, et al. Orbital angular momentum waves: generation, detection, and emerging applications. IEEE Communications Surveys & Tutorials, 22, 840-868(2019).

    [21] F Qin, L Wan, L Li, et al. A transmission metasurface for generating OAM beams. IEEE Antennas and Wireless Propagation Letters, 17, 1793-1796(2018).

    [22] [22] RosalesGuzmán C, Fbes A. How to Shape Light with Spatial Light Modulats[M]. US: SPIE Press, 2017.

    [23] Y Shen, Y Meng, X Fu, et al. Wavelength-tunable Hermite–Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb: CALGO laser. Optics Letters, 43, 291-294(2018).

    [24] R Song, C Gao, H Zhou, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm. Optics Letters, 45, 4626-4629(2020).

    [25] H Wang, S Fu, C Gao. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom. Optics Express, 29, 10811-10824(2021).

    [26] A Anhäuser, R Wunenburger, E Brasselet. Acoustic rotational manipulation using orbital angular momentum transfer. Physical Review Letters, 109, 034301(2012).

    [27] X Jiang, Y Li, B Liang, et al. Convert acoustic resonances to orbital angular momentum. Physical Review Letters, 117, 034301(2016).

    [28] H Li, G Ren, B Zhu, et al. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers. Optics Letters, 42, 179-182(2017).

    [29] J Verbeeck, H Tian, P Schattschneider. Production and application of electron vortex beams. Nature, 467, 301-304(2010).

    [30] C Liu, J Liu, L Niu, et al. Terahertz circular Airy vortex beams. Scientific Reports, 7, 1-8(2017).

    [31] M Mirhosseini, M Malik, Z Shi, et al. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 4, 1-6(2013).

    [32] J Leach, M J Padgett, S M Barnett, et al. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 88, 257901(2002).

    [33] Z Liu, S Yan, H Liu, et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Physical Review Letters, 123, 183902(2019).

    [34] J M Hickmann, E Fonseca, W C Soares, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physical Review Letters, 105, 053904(2010).

    [35] A Mourka, J Baumgartl, C Shanor, et al. Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Optics Express, 19, 5760-5771(2011).

    [36] S Fu, S Zhang, T Wang, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Optics Express, 24, 6240-6248(2016).

    [37] S Fu, Y Zhai, J Zhang, et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 1-12(2020).

    [38] Y Liu, S Sun, J Pu, et al. Propagation of an optical vortex beam through a diamond-shaped aperture. Optics & Laser Technology, 45, 473-479(2013).

    [39] A Ambuj, R Vyas, S Singh. Diffraction of orbital angular momentum carrying optical beams by a circular aperture. Optics Letters, 39, 5475-5478(2014).

    [40] H Tao, Y Liu, Z Chen, et al. Measuring the topological charge of vortex beams by using an annular ellipse aperture. Applied Physics B, 106, 927-932(2012).

    [41] H Qassim, F M Miatto, J P Torres, et al. Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement. Journal of the Optical Society of America B, 31, A20-A23(2014).

    [42] S Choudhary, R Sampson, Y Miyamoto, et al. Measurement of the radial mode spectrum of photons through a phase-retrieval method. Optics Letters, 43, 6101-6104(2018).

    [43] F Bouchard, N H Valencia, F Brandt, et al. Measuring azimuthal and radial modes of photons. Optics Express, 26, 31925-31941(2018).

    [44] J Wang, J Yang, I M Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature photonics, 6, 488-496(2012).

    [45] [45] Zhou Y. Optical communication with structured photons propagating through dynamic, aberrating media[D]. Rochester: University of Rochester, 2021.

    [46] G C Berkhout, M P Lavery, J Courtial, et al. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 105, 153601(2010).

    [47] Y Wen, I Chremmos, Y Chen, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Physical Review Letters, 120, 193904(2018).

    [48] W J Hossack, A M Darling, A Dahdouh. Coordinate transformations with multiple computer-generated optical elements. Journal of Modern Optics, 34, 1235-1250(1987).

    [49] G Ruffato, M Massari, G Parisi, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics. Optics Express, 25, 7859-7868(2017).

    [50] J Yang, Z Liu, S Gao, et al. Two-dimension and high-resolution demultiplexing of coaxial multiple orbital angular momentum beams. Optics Express, 27, 4338-4345(2019).

    [51] C Li, S Zhao. Efficient separating orbital angular momentum mode with radial varying phase. Photonics Research, 5, 267-270(2017).

    [52] G Ruffato, M Massari, F Romanato. Compact sorting of optical vortices by means of diffractive transformation optics. Optics Letters, 42, 551-554(2017).

    [53] G Ruffato, M Massari, M Girardi, et al. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared. Optics Express, 27, 24123-24134(2019).

    [54] S Lightman, G Hurvitz, R Gvishi, et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica, 4, 605-610(2017).

    [55] C Wan, J Chen, Q Zhan. Compact and high-resolution optical orbital angular momentum sorter. APL Photonics, 2, 031302(2017).

    [56] S Lightman, R Gvishi, G Hurvitz, et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals. Optics Letters, 40, 4460-4463(2015).

    [57] Y Yan, G Xie, M P Lavery, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications, 5, 5876(2014).

    [58] M P Lavery, D J Robertson, G C Berkhout, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon. Optics Express, 20, 2110-2115(2012).

    [59] G Ruffato, M Girardi, M Massari, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams. Scientific Reports, 8, 1-12(2018).

    [60] [60] Wen Y, Chremmos I, Chen Y, et al. Highresolution compact vtex mode sters based on a spiral transfmation [C]2018 Conference on Lasers ElectroOptics (CLEO), IEEE, 2018: 12.

    [61] [61] Huo Y, Yang G, Gu B. Realization of unitary transfm general linear transfmation by optical methods—(I)Possibility analysis [J]. Acta Physica Sinica, 1975, 24(6): 438447. (in Chinese)

    [62] N K Fontaine, R Ryf, H Chen, et al. Laguerre-Gaussian mode sorter. Nature Communications, 10, 1-7(2019).

    [63] [63] He L, Lin Z, Wen Y, et al. An inverse design method combining particle swarm optimization wavefront matching method f multiplane light conversion [C]Optical Society of America, 2020: FM7D.5.

    [64] [64] Lin Z, Wen Y, Chen Y, et al. Transmissive multiplane light conversion f demultiplexing bital angular momentum modes [C]Optical Society of America, 2020: SF1J. 5.

    [65] [65] Bian Y, Li Y, Li W, et al. Modes multiplexing conversion based on multiplane light conversion [C]Optical Society of America, 2020: M4A.252.

    [66] Q Zhao, S Hao, Y Wang, et al. Orbital angular momentum detection based on diffractive deep neural network. Optics Communications, 443, 245-249(2019).

    [67] Z Huang, P Wang, J Liu, et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Physical Review Applied, 15, 014037(2021).

    [68] S N Khonina, V V Kotlyar, R V Skidanov, et al. Gauss–Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element. Optics Communications, 175, 301-308(2000).

    [69] G Gibson, J Courtial, M J Padgett, et al. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 12, 5448-5456(2004).

    [70] M P Lavery, G C Berkhout, J Courtial, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. Journal of Optics, 13, 064006(2011).

    [71] M Malik, M Mirhosseini, M P Lavery, et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 5, 4115(2014).

    [72] V Potoček, F M Miatto, M Mirhosseini, et al. Quantum hilbert hotel. Physical Review Letters, 115, 160505(2015).

    [73] G Ruffato, M Massari, F Romanato. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics. Light: Science & Applications, 8, 1-13(2019).

    [74] S Takashima, H Kobayashi, K Iwashita. Integer multiplier for the orbital angular momentum of light using a circular-sector transformation. Physical Review A, 100, 063822(2019).

    [75] Y Wen, I Chremmos, Y Chen, et al. Arbitrary multiplication and division of the orbital angular momentum of light. Physical Review Letters, 124, 213901(2020).

    [76] H Zhou, J Dong, J Wang, et al. Orbital angular momentum divider of light. IEEE Photonics Journal, 9, 1-8(2017).

    [77] Z Zhao, Y Ren, G Xie, et al. Invited Article: Division and multiplication of the state order for data-carrying orbital angular momentum beams. APL Photonics, 1, 090802(2016).

    [78] [78] Ruffato G, Romanato F. Algebra of light: multiplication division of bital angular momentum [C]2020 Italian Conference on Optics Photonics (ICOP), IEEE, 2020: 14.

    [79] Y Wen, I Chremmos, Y Chen, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica, 7, 254-262(2020).

    [80] R Fickler, R Lapkiewicz, M Huber, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nature Communications, 5, 5502(2014).

    [81] G F Walsh. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate. Optics Express, 24, 6689-6704(2016).

    [82] G Ruffato, E Brasselet, M Massari, et al. Electrically activated spin-controlled orbital angular momentum multiplexer. Applied Physics Letters, 113, 011109(2018).

    [83] [83] Fontaine N K, Ryf R, Chen H, et al. LaguerreGaussian mode sters of high spatial mode count [C]International Society f Optics Photonics, 2020: 1120319.

    Tools

    Get Citation

    Copy Citation Text

    Zhensong Wan, Chaoyang Wang, Qiang Liu, Xing Fu. Research progress on technologies and applications of geometric coordinate transformation of vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210445

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Manipulation on optical vortex and its sensing application

    Received: Jul. 2, 2021

    Accepted: --

    Published Online: Oct. 28, 2021

    The Author Email:

    DOI:10.3788/IRLA20210445

    Topics