Opto-Electronic Advances, Volume. 7, Issue 9, 240050-1(2024)

Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes

Zhi Wu... Leimeng Xu*, Jindi Wang and Jizhong Song* |Show fewer author(s)
Author Affiliations
  • Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China
  • show less
    References(47)

    [1] CB Murray, DJ Norris, MG Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 115, 8706-8715(1993).

    [2] CJ Sun, YZ Jiang, L Zhang et al. Toward the controlled synthesis of lead halide perovskite nanocrystals. ACS Nano, 17, 17600-17609(2023).

    [3] Y Hamanaka, T Ogawa, M Tsuzuki et al. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J Phys Chem C, 115, 1786-1792(2011).

    [4] S Jain, S Bharti, GK Bhullar et al. I-III-VI core/shell QDs: synthesis, characterizations and applications. J Lumin, 219, 116912(2020).

    [5] J Zhang, B Zeng, HH Ye et al. Facile synthesis of ternary AgInS2 nanowires and their self-assembly of fingerprint-like nanostructures. Chin Chem Lett, 32, 1507-1510(2021).

    [6] Y Azhniuk, B Lopushanska, O Selyshchev et al. Synthesis and optical properties of Ag-Ga-S quantum dots. Phys Status Solidi B, 259, 2100349(2022).

    [7] K Suzuki, T Kuzuya, Y Hamanaka. Luminescence enhancement in CuInS2 nanoparticles through the selective passivation of nonradiative recombination sites by phosphine ligands. J Phys Chem C, 126, 16751-16758(2022).

    [8] HD Zang, HB Li, NS Makarov et al. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett, 17, 1787-1795(2017).

    [9] T Uematsu, T Doi, T Torimoto et al. Preparation of luminescent AgInS2-AgGaS2 solid solution nanoparticles and their optical properties. J Phys Chem Lett, 1, 3283-3287(2010).

    [10] T Kameyama, H Yamauchi, T Yamamoto et al. Tailored photoluminescence properties of Ag(In, Ga)Se2 quantum dots for near-infrared in vivo imaging. ACS Appl Nano Mater, 3, 3275-3287(2020).

    [11] ZY Liu, ZY Guan, X Li et al. Rational design and synthesis of highly luminescent multinary Cu-In-Zn-S semiconductor nanocrystals with tailored nanostructures. Adv Opt Mater, 8, 1901555(2020).

    [12] N Rismaningsih, H Yamauchi, T Kameyama et al. Controlling electronic energy structure of Ag-Ιn-Ga-S-Se quantum dots showing band-edge emission. Meet Abstr, MA2020-02, 3121(2020).

    [13] ZY Guan, HH Ye, PW Lv et al. The formation process of five-component Cu-In-Zn-Se-S nanocrystals from ternary Cu–In–S and quaternary Cu-In-Se-S nanocrystals via gradually induced synthesis. J Mater Chem C, 9, 8537-8544(2021).

    [14] N Rismaningsih, H Yamauchi, T Kameyama et al. Photoluminescence properties of quinary Ag-(In, Ga)-(S, Se) quantum dots with a gradient alloy structure for in vivo bioimaging. J Mater Chem C, 9, 12791-12801(2021).

    [15] R Kottayi, V Ilangovan, R Sittaramane. Wide light-harvesting AgZnGaS3 quantum dots as an efficient sensitizer for solar cells. Opt Mater, 134, 113036(2022).

    [16] XL Xie, JX Zhao, OY Lin et al. Narrow-bandwidth blue-emitting Ag-Ga-Zn-S semiconductor nanocrystals for quantum-dot light-emitting diodes. J Phys Chem Lett, 13, 11857-11863(2022).

    [17] T Kameyama, M Kishi, C Miyamae et al. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag-In-S nanoparticles via Ga3+ doping. ACS Appl Mater Interfaces, 10, 42844-42855(2018).

    [18] JB Li, LW Wang. First principle study of core/shell structure quantum dots. Appl Phys Lett, 84, 3648-3650(2004).

    [19] P Reiss, M Protière, L Li. Core/shell semiconductor nanocrystals. Small, 5, 154-168(2009).

    [20] A Raevskaya, V Lesnyak, D Haubold et al. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J Phys Chem C, 121, 9032-9042(2017).

    [21] T Uematsu, K Wajima, DK Sharma et al. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater, 10, 713-726(2018).

    [22] W Hoisang, T Uematsu, T Yamamoto et al. Core nanoparticle engineering for narrower and more intense band-edge emission from AgInS2/GaSx core/shell quantum Dots. Nanomaterials, 9, 1763(2019).

    [23] TY Bai, XM Wang, YY Dong et al. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap. Inorg Chem, 59, 5975-5982(2020).

    [24] G Motomura, K Ogura, Y Iwasaki et al. Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Appl Phys Lett, 117, 091101(2020).

    [25] JH Wei, F Li, C Chang et al. Synthesis of emission tunable AgInS2/ZnS quantum dots and application for light emitting diodes. J Phys Commun, 4, 045016(2020).

    [26] X Li, X Tong, S Yue et al. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy, 89, 106392(2021).

    [27] SJ Lee, JE Lee, CJ Lee et al. Design of Ag-Ga-S2-xSex-based eco-friendly core/shell quantum dots for narrow full-width at half-maximum using noble ZnGa2S4 shell material. J Korean Phys Soc, 81, 935-941(2022).

    [28] HJ Lee, S Im, D Jung et al. Coherent heteroepitaxial growth of I-III-VI2 Ag(In, Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat Commun, 14, 3779(2023).

    [29] G Motomura, T Uematsu, S Kuwabata et al. Quantum-dot light-emitting diodes exhibiting narrow-spectrum green electroluminescence by using Ag-In-Ga-S/GaSx quantum dotS. ACS Appl Mater Interfaces, 15, 8336-8344(2023).

    [30] W Hoisang, T Uematsu, T Torimoto et al. Luminescent quaternary Ag(InxGa1–x)S2/GaSy core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg Chem, 60, 13101-13109(2021).

    [31] W Hoisang, T Uematsu, T Torimoto et al. Surface ligand chemistry on quaternary Ag(InxGa1−x)S2 semiconductor quantum dots for improving photoluminescence properties. Nanoscale Adv, 4, 849-857(2022).

    [32] T Uematsu, M Tepakidareekul, T Hirano et al. Facile high-yield synthesis of Ag-In-Ga-S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem Mater, 35, 1094-1106(2023).

    [33] JW Chen, HY Xiang, J Wang et al. Perovskite white light emitting diodes: progress, challenges, and opportunities. ACS Nano, 15, 17150-17174(2021).

    [34] GX Huang, Y Huang, ZL Liu et al. White light-emitting diodes based on quaternary Ag-In-Ga-S quantum dots and their influences on melatonin suppression index. J Lumin, 233, 117903(2021).

    [35] HX Lu, Z Hu, WJ Zhou et al. Synthesis and structure design of I-III-VI quantum dots for white light-emitting diodes. Mater Chem Front, 6, 418-429(2022).

    [36] Z Hu, HX Lu, WJ Zhou et al. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes. J Mater Sci Technol, 134, 189-196(2023).

    [37] T Omata, K Nose, S Otsuka-Yao-Matsuo. Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J Appl Phys, 105, 073106(2009).

    [38] PF Zhu, S Thapa, HY Zhu et al. Solid-state white light-emitting diodes based on 3D-printed CsPbX3-resin color conversion layers. ACS Appl Electron Mater, 5, 5316-5324(2023).

    [39] PF Zhu, S Thapa, HY Zhu et al. Composition engineering of lead-free double perovskites towards efficient warm white light emission for health and well-being. J Alloys Compd, 960, 170836(2023).

    [40] KS Zhang, WX Fan, TL Yao et al. Polymer‐surface‐mediated mechanochemical reaction for rapid and scalable manufacture of perovskite QD phosphors. Adv Mater, 36, 2310521(2024).

    [41] NTK Thanh, N Maclean, S Mahiddine. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev, 114, 7610-7630(2014).

    [42] HF Zhao, YC Zhu, HY Ye et al. Atomic‐scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv Mater, 35, 2206911(2023).

    [43] GW Sun, XY Liu, Z Liu et al. Emission wavelength tuning via competing lattice expansion and octahedral tilting for efficient red perovskite light‐emitting diodes. Adv Funct Mater, 31, 2106691(2021).

    [44] PH Wang, JL Tang, YB Kang et al. Crystal structure and optical properties of GaAs nanowires. Acta Phys Sin, 68, 087803(2019).

    [45] B Jiang, SL Chen, XL Cui et al. Temperature-dependent photoluminescence in hybrid iodine-based perovskites film. Acta Phys Sin, 68, 246801(2019).

    [46] HL Huang, YL Yang, SY Qiao et al. Accommodative organoammonium cations in a‐sites of Sb-In halide perovskite derivatives for tailoring BroadBand photoluminescence with X‐ray scintillation and white‐light emission. Adv Funct Mater, 34, 2309112(2024).

    [47] R Zhou, LZ Sui, XB Liu et al. Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat Commun, 14, 1310(2023).

    Tools

    Get Citation

    Copy Citation Text

    Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song. Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes[J]. Opto-Electronic Advances, 2024, 7(9): 240050-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 2, 2024

    Accepted: Jul. 22, 2024

    Published Online: Nov. 11, 2024

    The Author Email: Xu Leimeng (XuLM), Song Jizhong (SongJZ)

    DOI:10.29026/oea.2024.240050

    Topics