Acta Photonica Sinica, Volume. 53, Issue 2, 0212002(2024)

Temperature Compensation Method for Optical Voltage Sensing Based on Temperature Field and D-Kalman Parameter Estimation

Shengshuo CHEN, Yansong LI*, Dongxu CHEN, Shijia KANG, Zhiguang XU, and Jun LIU
Author Affiliations
  • School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China
  • show less
    Figures & Tables(27)
    Schematic of horizontal modulation OVS
    Internal structure section of OVS sensing head
    BGO crystal thermal model
    Schematic of external temperature change
    Coordinate system definition of stage II temperature field
    Construction of BGO crystal thermal circuit model
    Flow of central differential Kalman filtering
    Temperature fitting image of BGO crystal physical properties parameters
    Simulation of BGO crystal temperature field
    Model calculation and simulation comparison of BGO crystal face center point and body center point
    Cooling environment BGO body center point model calculation and simulation comparison
    Temperature-time distribution at each position of the central axis of the BGO crystal
    The analytical formula of the through optical path and the relative error of the simulation
    Comparison of the measured data of the temperature of the center point of the crystal surface and the calculated value of the temperature field model
    BGO crystal internal temperature estimation result
    Photodetector linear response calibration
    The AC and DC components of the sensor output signal in a heating environment
    CDKF estimation results for refractive index n0
    Optical voltage sensor temperature compensation experimental platform equipment
    Optical voltage sensor temperature compensation experiment platform connection schematic
    • Table 1. Fitting formula and evaluation index of physical properties parameters

      View table
      View in Article

      Table 1. Fitting formula and evaluation index of physical properties parameters

      ParametersFitting equations and evaluation metrics
      Thermal conductivity λ/(W·m-1·K-1Formulaλ=-4.073×10-13T5+9.9×10-10T4-9.428×10-7T3+0.0004466T2-0.1105T+13.95
      IndicatorSSER-squareRMSE
      0.018 20.998 70.067 46
      Specific heat capacity Cp/(J·kg-1·K-1FormulaCp=1.541×10-18T8-5.616×10-15T7+8.654×10-12T6-7.319×10-9T5+3.671×10-6T4-0.00109T3+0.175T2-9.434T+662.7
      IndicatorSSER-squareRMSE
      0.023 5910.108 6
      Thermal diffusivity α'/(10-6·K-1Formulaα'=-1.152×10-11T4+2.176×10-8T3-1.67×10-5T2+0.009191T+4.725
      IndicatorSSER-squareRMSE
      0.003 8480.999 30.025 32
    • Table 2. Model parameters

      View table
      View in Article

      Table 2. Model parameters

      ParametersValue
      Poisson's ratio μ0.175
      Convective heat transfer coefficient h2.5 W·m-2·K-1
      Elasto-optical coefficient p11-p12-2.995×10-13 m2·N-1
      Elasto-optical coefficient p44-1.365×10-12 m2·N-1
      Crystal length l10 mm
      Crystal thickness d5 mm
    • Table 3. Thermal path model parameters

      View table
      View in Article

      Table 3. Thermal path model parameters

      ParametersThermal resistance RThermal capacity C
      Value1 604.708 82.297 2
    • Table 4. Calculation results of voltage compensation at different external temperatures

      View table
      View in Article

      Table 4. Calculation results of voltage compensation at different external temperatures

      Temperature/℃Compensation voltage /kV
      202.984 4
      252.989 8
      303.014 4
      352.990 1
      403.011 1
    • Table 5. Comparison of relative errors of different temperature compensation methods under the same platform

      View table
      View in Article

      Table 5. Comparison of relative errors of different temperature compensation methods under the same platform

      Temperature/℃D-KalmanBPNN
      200.52%0.96%
      250.34%0.79%
      300.48%0.66%
      350.33%0.82%
      400.37%0.91%
    • Table 6. Comparison of relative errors of different temperature compensation methods for different platforms

      View table
      View in Article

      Table 6. Comparison of relative errors of different temperature compensation methods for different platforms

      Temperature rangeCompensation methodsCompensation results
      [20 ℃,40 ℃]D-Kalman0.52%
      [-10 ℃,50 ℃]Fresnel rhombic crystal0.9%
      [20 ℃,30 ℃]Reciprocal optical path1.53%
    • Table 7. Experimental equipment model

      View table
      View in Article

      Table 7. Experimental equipment model

      EquipmentManufacturerModel
      Light sourceFIBKEY6 900 Series Handheld Light Source
      PhotodetectorTHORLABSPDA36A2
      High frequency transformerYangzhou Pengxiang Electric Power Equipment FactoryPX1007
      Fluorescent fiber thermometerINDIGOFOTS-DINA-7060-N
    Tools

    Get Citation

    Copy Citation Text

    Shengshuo CHEN, Yansong LI, Dongxu CHEN, Shijia KANG, Zhiguang XU, Jun LIU. Temperature Compensation Method for Optical Voltage Sensing Based on Temperature Field and D-Kalman Parameter Estimation[J]. Acta Photonica Sinica, 2024, 53(2): 0212002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jul. 6, 2023

    Accepted: Sep. 15, 2023

    Published Online: Mar. 28, 2024

    The Author Email: LI Yansong (liyansong811@126.com)

    DOI:10.3788/gzxb20245302.0212002

    Topics