Optics and Precision Engineering, Volume. 32, Issue 14, 2256(2024)
Visual inspection of soldering defects on board surfaces against complex backgrounds
[1] W J JIANG, T F LI, S L ZHANG et al. PCB defects target detection combining multi-scale and attention mechanism. Engineering Applications of Artificial Intelligence, 123, 106359(2023).
[2] Z Y ZHONG, Z C MA. A novel defect detection algorithm for flexible integrated circuit package substrates. IEEE Transactions on Industrial Electronics, 69, 2117-2126(2022).
[3] [3] 刘玉淇, 吴一全. 基于机器视觉的太阳能电池片缺陷检测算法综述[J]. 光学 精密工程, 2024, 32(6): 868-900. doi: 10.37188/ope.20243206.0868LIUY Q, WUY Q. Review of defect detection algorithms for solar cells based on machine vision[J]. Opt. Precision Eng., 2024, 32(6): 868-900.(in Chinese). doi: 10.37188/ope.20243206.0868
[4] [4] 乔健, 陈能达, 伍雁雄, 等. 融合注意力机制的金属锅圆柱表面缺陷检测[J]. 光学 精密工程, 2023, 31(3): 404-416. doi: 10.37188/OPE.20233103.0404QIAOJ, CHENN D, WUY X, et al. Defect detection of cylindrical surface of metal pot combining attention mechanism[J]. Opt. Precision Eng., 2023, 31(3): 404-416.(in Chinese). doi: 10.37188/OPE.20233103.0404
[5] [5] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学 精密工程, 2023, 31(12): 1804-1815. doi: 10.37188/OPE.20233112.1804CHENY F, LIAOF, HUANGX Y, et al. Multi-scale YOLOv5 for solar cell defect detection[J]. Opt. Precision Eng., 2023, 31(12): 1804-1815.(in Chinese). doi: 10.37188/OPE.20233112.1804
[6] [6] 夏衍, 罗晨, 周怡君, 等. 基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法[J]. 光学 精密工程, 2023, 31(22): 3357-3370. doi: 10.37188/OPE.20233122.3357XIAY, LUOC, ZHOUY J, et al. A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J]. Opt. Precision Eng., 2023, 31(22): 3357-3370.(in Chinese). doi: 10.37188/OPE.20233122.3357
[7] R W DING, L H DAI, G P LI et al. TDD-net: a tiny defect detection network for printed circuit boards. CAAI Transactions on Intelligence Technology, 4, 110-116(2019).
[8] R G XU, R Y HAO, B Q HUANG. Efficient surface defect detection using self-supervised learning strategy and segmentation network. Advanced Engineering Informatics, 52, 101566(2022).
[9] L L ZHANG, Y Q JIN, X S YANG et al. Convolutional neural network-based multi-label classification of PCB defects. The Journal of Engineering, 1612-1616(2018).
[10] N CAI, G D CEN, J X WU et al. SMT solder joint inspection via a novel cascaded convolutional neural network. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8, 670-677(2018).
[11] C J LI, Z QU, S Y WANG et al. A method of defect detection for focal hard samples PCB based on extended FPN model. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12, 217-227(2022).
[12] K Y CHAN, K F C YIU, H K LAM et al. Ball bonding inspections using a conjoint framework with machine learning and human judgement. Applied Soft Computing, 102, 107115(2021).
[13] Y B CHEN, J R WANG, G T WANG. Intelligent welding defect detection model on improved R-CNN. IETE Journal of Research, 69, 9235-9244(2023).
[14] X B ZHANG, Y ZHANG, M HU et al. Insulator defect detection based on YOLO and SPP-Net, 403-407(2020).
[15] Y Y ZHANG, Z W ZHANG, K FU et al. Adaptive defect detection for 3-D printed lattice structures based on improved faster R-CNN. IEEE Transactions on Instrumentation and Measurement, 71, 5020509(2022).
[16] J YANG, S B LI, Z WANG et al. Real-time tiny part defect detection system in manufacturing using deep learning. IEEE Access, 7, 89278-89291(2019).
[17] R X WANG, C F CHEUNG. CenterNet-based defect detection for additive manufacturing. Expert Systems with Applications, 188, 116000(2022).
[18] H H PAN, Z J PANG, Y W WANG et al. A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects. IEEE Access, 8, 119951-119960(2020).
[19] H ZHANG, L X JIANG, C Q LI. CS-ResNet: cost-sensitive residual convolutional neural network for PCB cosmetic defect detection. Expert Systems with Applications, 185, 115673(2021).
[20] V M BASKARAN et al. A deep context learning based PCB defect detection model with anomalous trend alarming system. Results in Engineering, 17, 100968(2023).
[21] X WANG, J S GAO, B J HOU et al. A lightweight modified YOLOX network using coordinate attention mechanism for PCB surface defect detection. IEEE Sensors Journal, 22, 20910-20920(2022).
[22] J LI, J N GU, Z D HUANG et al. Application research of improved YOLO V3 algorithm in PCB electronic component detection. Applied Sciences, 9, 3750(2019).
[23] J S S V MAMIDI, S SAMEER, J BAYANA. A Light Weight Version of PCB Defect Detection system using YOLO V4 Tiny, 441-445(2022).
[24] W CHEN, Z T HUANG, Q MU et al. PCB defect detection method based on transformer-YOLO. IEEE Access, 10, 129480-129489(2022).
[25] MR AMINI, S CANU, A FISCHER et al. SUNKARA R, LUO T, 443-459(2023).
[26] J R CHEN, S H KAO, H HE et al. Run, don’t walk: chasing higher FLOPS for faster neural networks, 12021-12031(2023).
[27] L C CHEN, G PAPANDREOU, I KOKKINOS et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[28] Y QUAN, D ZHANG, L Y ZHANG et al. Centralized feature pyramid for object detection. IEEE Transactions on Image Processing, 32, 4341-4354(2023).
[30] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[31] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2999-3007(2017).
[32] M X TAN, R M PANG, Q V LE. EfficientDet: scalable and efficient object detection, 10778-10787(2020).
[34] M F CHEN, P CHEN, S WANG et al. TFT-LCD Mura defect visual inspection method in multiple backgrounds. Journal of the Society for Information Display, 30, 818-831(2022).
[35] P CHEN, M F CHEN, S WANG et al. Real-time defect detection of TFT-LCD displays using a lightweight network architecture. Journal of Intelligent Manufacturing, 35, 1337-1352(2024).
Get Citation
Copy Citation Text
Liying ZHU, Sen WANG, Aiping SHEN, Xuangang LI. Visual inspection of soldering defects on board surfaces against complex backgrounds[J]. Optics and Precision Engineering, 2024, 32(14): 2256
Category:
Received: Mar. 13, 2024
Accepted: --
Published Online: Sep. 27, 2024
The Author Email: WANG Sen (wangsen0401@126.com)