Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1583(2023)
Research Progress on 3D Printing and Performance Optimization of Ceramic Cores for Hollow Blade Casting
[4] [4] YANG Z G, LI K L, MA S Q, et al. Preparation, mechanical, and leaching properties of CaZrO3 ceramic cores[J]. Int J Appl Ceram Technol, 2021, 18(5): 1490-1497.
[18] [18] SHI Y S, ZHANG J L, WEN S F, et al. Additive manufacturing and foundry innovation[J]. China Foundry, 2021, 18(4): 286-295.
[19] [19] MAINES E M, PORWAL M K, ELLISON C J, et al. Correction: Sustainable advances in SLA/DLP 3D printing materials and processes[J]. Green Chem, 2022, 24(2): 958-959.
[20] [20] WANG W, SUN J X, GUO B B, et al. Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions[J]. J Eur Ceram Soc, 2020, 40(3): 682-688.
[21] [21] LI H, HU K H, LIU Y S, et al. Improved mechanical properties of silica ceramic cores prepared by 3D printing and sintering processes[J]. Scr Mater, 2021, 194: 113665.
[22] [22] LI H, LIU Y S, LIU Y S, et al. Evolution of the microstructure and mechanical properties of stereolithography formed alumina cores sintered in vacuum[J]. J Eur Ceram Soc, 2020, 40(14): 4825-4836.
[23] [23] KODAMA H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer[J]. Rev Sci Instrum, 1981, 52(11): 1770-1773.
[25] [25] LI H, LIU Y S, LIU Y S, et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores[J]. Ceram Int, 2021, 47(4): 4884-4894.
[26] [26] LI Q L, AN X L, LIANG J J, et al. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades[J]. J Mater Sci Technol, 2022, 104: 19-32.
[29] [29] CHEN Q, GUILLEMOT G, GANDIN C A, et al. Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials[J]. Addit Manuf, 2017, 16: 124-137.
[30] [30] KIM E H, CHOI H H, JUNG Y G. Fabrication of a ceramic core for an impeller blade using a 3D printing technique and inorganic binder[J]. J Manuf Process, 2020, 53: 43-47.
[31] [31] ZHENG W, WU J M, CHEN S, et al. Fabrication of high-performance silica-based ceramic cores through selective laser sintering combined with vacuum infiltration[J]. Addit Manuf, 2021, 48: 102396.
[36] [36] XIE H H, YANG X F, LIU P, et al. 3D gel printing of alumina ceramics followed by efficient multi-step liquid desiccant drying[J]. J Eur Ceram Soc, 2021, 41(13): 6634-6640.
[37] [37] ORDOEZ E, GALLEGO J M, COLORADO H A. 3D printing via the direct ink writing technique of ceramic pastes from typical formulations used in traditional ceramics industry[J]. Appl Clay Sci, 2019, 182: 105285.
[38] [38] HOSSAIN S S, BAEK I W, SON H J, et al. 3D printing of porous low-temperature in situ mullite ceramic using waste rice husk ash-derived silica[J]. J Eur Ceram Soc, 2022, 42(5): 2408-2419.
[39] [39] TANG S Y, YANG L, LIU X W, et al. Direct ink writing additive manufacturing of porous alumina-based ceramic cores modified with nanosized MgO[J]. J Eur Ceram Soc, 2020, 40(15): 5758-5766.
[40] [40] TANG S Y, FAN Z T, ZHAO H P, et al. Layered extrusion forming-a simple and green method for additive manufacturing ceramic core[J]. Int J Adv Manuf Technol, 2018, 96(9-12): 3809-3819.
[42] [42] YANG L, TANG S Y, LI G J, et al. Performance characteristics of collapsible CaO-SiO2 based ceramic core material via layered extrusion forming[J]. Ceram Int, 2019, 45(6): 7681-7689.
[43] [43] LI Q L, LIANG J J, ZHANG Y L, et al. Fused silica ceramic core based on network-structured zircon design via 3D printing[J]. Scr Mater, 2022, 208: 114342.
[44] [44] WANG X G, ZHOU Y L, ZHOU L, et al. Microstructure and properties evolution of silicon-based ceramic cores fabricated by 3D printing with stair-stepping effect control[J]. J Eur Ceram Soc, 2021, 41(8): 4650-4657.
[46] [46] LIU J Q, LI Q L, HUO M D, et al. Microstructure and mechanical properties of 3D-printed nano-silica reinforced alumina cores[J]. Ceram Int, 2022, 48(20): 30282-30293.
[47] [47] ZHENG W, WU J M, CHEN S, et al. Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography[J]. J Mater Sci Technol, 2022, 116: 161-168.
[49] [49] FAN J X, XU X Q, NIU S X, et al. Anisotropy management on microstructure and mechanical property in 3D printing of silica-based ceramic cores[J]. J Eur Ceram Soc, 2022, 42(10): 4388-4395.
[50] [50] LI Q L, HOU W Q, LIANG J J, et al. Controlling the anisotropy behaviour of 3D printed ceramic cores: from intralayer particle distribution to interlayer pore evolution[J]. Addit Manuf, 2022, 58: 103055.
[51] [51] LI H, LIU Y S, COLOMBO P, et al. The influence of sintering procedure and porosity on the properties of 3D printed alumina ceramic cores[J]. Ceram Int, 2021, 47(19): 27668-27676.
Get Citation
Copy Citation Text
XU Xiqing, YANG Yongkang, LI Jie, LI Xin, GUO Yajie, NIU Shuxin, HU Yongbiao. Research Progress on 3D Printing and Performance Optimization of Ceramic Cores for Hollow Blade Casting[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1583
Category:
Received: Mar. 23, 2023
Accepted: --
Published Online: Aug. 13, 2023
The Author Email: Xiqing XU (xiqingxu@chd.edu.cn)
CSTR:32186.14.