Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 11, 1270(2024)
Study on surface impedance absorption boundary based on FDTD algorithm
[7] [7] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200. doi: 10.1006/jcph.1994.1159.
[8] [8] CHEW W C, LIU Q H. Perfectly matched layers for elastodynamics: a new absorbing boundary condition[J]. Journal of Computational Acoustics, 1996, 4(4): 341-359. doi: 10.1142/S0218396X96000118.
[9] [9] RODEN J S, GEDNEY S D. Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media[J]. Microwave and Optical Technology Letters, 2000, 27(5): 334-339. doi: 10.1002/1098-2760(20001205)27:53.0.CO;2-A.
[10] [10] KUZUOGLU M, MITTRA R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave and Guided Wave Letters, 1996, 6(12): 447-449. doi: 10.1109/75.544545.
[13] [13] MAO Y, ELSHERBENI A Z, LI S, et al. Surface impedance absorbing boundary for terminating FDTD simulations[J]. Applied Computational Electromagnetics Society Journal, 2014, 29(12): 1035-1046.
[14] [14] LEONTOVICH M A. Approximate boundary conditions for the electromagnetic field on the surface of a good conductor[J]. Investigations on Radiowave Propagation, 1957(2): 5-12.
[16] [16] MALONEY J G, SMITH G S. The use of surface impedance concepts in the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(1): 38-48. doi: 10.1109/8.123351.
[17] [17] OH K S, SCHUTT-AINE J E. An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(7): 660-666. doi: 10.1109/8.391136.
[18] [18] YUFEREV S, PROEKT L, IDA N. Surface impedance boundary conditions near corners and edges: rigorous consideration[J]. IEEE Transactions on Magnetics, 2001, 37(5): 3465-3468. doi: 10.1109/20.952638.
[19] [19] MAKINEN R M, DE-GERSEM H, WEILAND T, et al. A conformal surface-impedance boundary condition for the modeling of curved lossy surfaces in 3D FIT/FDTD techniques[C]//2005 IEEE Antennas and Propagation Society International Symposium. Washington, DC, USA: IEEE, 2005: 102-105. doi: 10.1109/APS.2005.1551746.
[21] [21] UNO T, ARIMA T, KURAHARA A. FDTD modeling of nonperiodic antenna located above metasurface using surface impedance boundary condition[J]. EPJ Applied Metamaterials, 2019, 6(17): 7. doi: 10.1051/epjam/2019014.
[23] [23] SHEEN D M, ALI S M, ABOUZAHRA M D, et al. Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits[J]. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(7): 849-857. doi: 10.1109/22.55775.
Get Citation
Copy Citation Text
YAN Yan, CHEN Hua, ZHU Yonghao, ZHANG Jifang. Study on surface impedance absorption boundary based on FDTD algorithm[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(11): 1270
Category:
Received: Mar. 20, 2023
Accepted: Jan. 3, 2025
Published Online: Jan. 3, 2025
The Author Email: Hua CHEN (cherrychen40600@163.com)