Journal of Radiation Research and Radiation Processing, Volume. 42, Issue 6, 060101(2024)

Research process of radiation-induced synthesis and functionalization of covalent organic frameworks

Mingxing ZHANG, Junchang CHEN, and Shu'ao WANG*
Author Affiliations
  • State Key Laboratory of Radiation Medicine and Protection,School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions,Soochow University,Suzhou 215123,China
  • show less
    References(60)

    [1] Côté A P, Benin A I, Ockwig N W et al. Porous,crystalline,covalent organic frameworks[J]. Science, 310, 1166-1170(2005).

    [2] Hasselstrom T, Henry M C, Murr B. Synthesis of amino acids by beta radiation[J]. Science, 125, 350-351(1957).

    [3] Zhang M X, Chen J C, Wang M L et al. Electron beam-induced preparation of AIE non-woven fabric with excellent fluorescence durability[J]. Applied Surface Science, 541, 148382(2021).

    [4] Zhang M X, Chen J C, Zhang M J et al. Radiation-induced in situ-printed nonconjugated fluorescent nonwoven fabric with superior fluorescent properties[J]. ACS Applied Materials & Interfaces, 12, 49258-49264(2020).

    [5] Zhang M X, Gao Q H, Yang C G et al. Preparation of amidoxime-based nylon-66 fibers for removing uranium from low-concentration aqueous solutions and simulated nuclear industry effluents[J]. Industrial & Engineering Chemistry Research, 55, 10523-10532(2016).

    [6] Zhang M X, Gao Q H, Yang C G et al. Preparation of antimicrobial MnO4--doped nylon-66 fibers with excellent laundering durability[J]. Applied Surface Science, 422, 1067-1074(2017).

    [7] Zhang M X, Yuan M J, Zhang M J et al. Efficient removal of uranium from diluted aqueous solution with hydroxypyridone functionalized polyethylene nonwoven fabrics[J]. Radiation Physics and Chemistry, 171, 108742(2020).

    [8] Fujita H, Izawa M, Yamazaki H. γ-ray-induced formation of gold Sol from chloroauric acid solution[J]. Nature, 196, 666-667(1962).

    [9] Marignier J L, Belloni J, Delcourt M O et al. Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction[J]. Nature, 317, 344-345(1985).

    [10] Zhang M X, Chen J C, Wang M L et al. Pyrene-based nonwoven fabric with tunable fluorescence properties by employing the aggregation-caused quenching effect[J]. ACS Applied Materials & Interfaces, 13, 9036-9042(2021).

    [11] Zhang M X, Chen J C, Mao X Z et al. Fluorescent nonwoven fabric with synergistic dual fluorescence emission for visible and selective ammonia gas detection[J]. Radiation Physics and Chemistry, 201, 110453(2022).

    [12] Zhang M X, Chen J C, Zhang S T et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions[J]. Journal of the American Chemical Society, 142, 9169-9174(2020).

    [13] Elewa A M, Mekhemer I M A, EL-Mahdy A F M et al. Room-temperature synthesis of covalent organic frameworks using gamma-irradiation in open-air conditions[J]. Small, 20, 2311472(2024).

    [14] Chen J C, Zhang M X, Zhang S T et al. Metal-organic Framework@Metal oxide heterostructures induced by electron-beam radiation[J]. Angewandte Chemie International Edition, 61, e202212532(2022).

    [15] Chen J C, Zhang M X, Shu J et al. Radiation-induced de novo defects in metal-organic frameworks boost CO2 sorption[J]. Journal of the American Chemical Society, 145, 23651-23658(2023).

    [16] Zhang M X, Chen J C, Zhao X F et al. A MOF@Metal oxide heterostructure induced by post-synthetic gamma-ray irradiation for catalytic reduction[J]. Angewandte Chemie International Edition, 63, e202405213(2024).

    [17] Chen J C, Zhang M X, Shu J et al. Electron beam irradiation-induced formation of defect-rich zeolites under ambient condition within minutes[J]. Angewandte Chemie International Edition, 60, 14858-14863(2021).

    [18] Chen X Q, Qiu M H, Li S G et al. Gamma-ray irradiation to accelerate crystallization of mesoporous zeolites[J]. Angewandte Chemie International Edition, 59, 11325-11329(2020).

    [19] Ma T Q, Kapustin E A, Yin S X et al. Single-crystal X-ray diffraction structures of covalent organic frameworks[J]. Science, 361, 48-52(2018).

    [20] Han J, Feng J, Kang J et al. Fast growth of single-crystal covalent organic frameworks for laboratory X-ray diffraction[J]. Science, 383, 1014-1019(2024).

    [21] Babarao R, Jiang J W. Exceptionally high CO2 storage in covalent-organic frameworks: atomistic simulation study[J]. Energy & Environmental Science, 1, 139(2008).

    [22] Furukawa H, Yaghi O M. Storage of hydrogen,methane,and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 131, 8875-8883(2009).

    [23] Doonan C J, Tranchemontagne D J, Glover T G et al. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2, 235-238(2010).

    [24] Sun Q, Aguila B, Perman J et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 139, 2786-2793(2017).

    [25] Lu Q Y, Ma Y C, Li H et al. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions[J]. Angewandte Chemie International Edition, 57, 6042-6048(2018).

    [26] Sun Q, Aguila B, Earl L D et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 30, 1705479(2018).

    [27] Guo X H, Li Y, Zhang M C et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption[J]. Angewandte Chemie International Edition, 59, 22697-22705(2020).

    [28] Wang Y, Xie M S, Lan J H et al. Radiation controllable synthesis of robust covalent organic framework conjugates for efficient dynamic column extraction of 99TcO4-[J]. Chem, 6, 2796-2809(2020).

    [29] Wang Y, Lan J H, Yang X F et al. Superhydrophobic phosphonium modified robust 3D covalent organic framework for preferential trapping of charge dispersed oxoanionic pollutants[J]. Advanced Functional Materials, 32, 2205222(2022).

    [30] Wu X W, Han X, Xu Q S et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing[J]. Journal of the American Chemical Society, 141, 7081-7089(2019).

    [31] Yuan C, Jia W Y, Yu Z Y et al. Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic separations?[J]. Journal of the American Chemical Society, 144, 891-900(2022).

    [32] Wei P F, Qi M Z, Wang Z P et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis[J]. Journal of the American Chemical Society, 140, 4623-4631(2018).

    [33] Ding S Y, Gao J, Wang Q et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction[J]. Journal of the American Chemical Society, 133, 19816-19822(2011).

    [34] Li T, Zhang P L, Dong L Z et al. Post-synthetic rhodium (III) complexes in covalent organic frameworks for photothermal heterogeneous C-H activation[J]. Angewandte Chemie International Edition, 63, e202318180(2024).

    [35] Ding X S, Chen L, Honsho Y et al. An n-channel two-dimensional covalent organic framework[J]. Journal of the American Chemical Society, 133, 14510-14513(2011).

    [36] Chen L, Furukawa K, Gao J et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. Journal of the American Chemical Society, 136, 9806-9809(2014).

    [37] Wang M C, Wang M, Lin H H et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping[J]. Journal of the American Chemical Society, 142, 21622-21627(2020).

    [38] DeBlase C R, Silberstein K E, Truong T T et al. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. Journal of the American Chemical Society, 135, 16821-16824(2013).

    [39] Xu H, Tao S S, Jiang D L. Proton conduction in crystalline and porous covalent organic frameworks[J]. Nature Materials, 15, 722-726(2016).

    [40] Xu S Q, Wang G, Biswal B P et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries[J]. Angewandte Chemie International Edition, 58, 849-853(2019).

    [41] Lin G Q, Ding H M, Yuan D Q et al. A pyrene-based,fluorescent three-dimensional covalent organic framework[J]. Journal of the American Chemical Society, 138, 3302-3305(2016).

    [42] Tan J, Namuangruk S, Kong W F et al. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability[J]. Angewandte Chemie International Edition, 55, 13979-13984(2016).

    [43] Fang Q R, Wang J H, Gu S et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. Journal of the American Chemical Society, 137, 8352-8355(2015).

    [44] Kuhn P, Antonietti M, Thomas A. Porous,covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie (International Ed.), 47, 3450-3453(2008).

    [45] Campbell N L, Clowes R, Ritchie L K et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chemistry of Materials, 21, 204-206(2009).

    [46] Biswal B P, Chandra S, Kandambeth S et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. Journal of the American Chemical Society, 135, 5328-5331(2013).

    [47] Guan X Y, Ma Y C, Li H et al. Fast,ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 140, 4494-4498(2018).

    [48] Kim S, Park C, Lee M et al. Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth[J]. Advanced Functional Materials, 27, 1700925(2017).

    [49] He J, Jiang X, Xu F J et al. Low power,low temperature and atmospheric pressure plasma-induced polymerization: facile synthesis and crystal regulation of covalent organic frameworks[J]. Angewandte Chemie International Edition, 60, 9984-9989(2021).

    [50] Wang Z F, Zhang Y S, Liu J J et al. Flux synthesis of two-dimensional covalent organic frameworks[J]. Nature Protocols, 19, 3489-3519(2024).

    [51] Zhang M X, Yuan M J, Zhao X F et al. Radiation-induced one-pot synthesis of grafted covalent organic frameworks[J]. Science China Chemistry, 66, 1781-1787(2023).

    [52] Zhao X F, Chen J C, Mao X Z et al. One-pot synthesis of a mixed-valent copper(I/II)-coordinated covalent organic framework induced by γ-ray radiation[J]. Inorganic Chemistry, 63, 12333-12341(2024).

    [53] Zhu D Y, Zhang Z Q, Alemany L B et al. Rapid,ambient temperature synthesis of imine covalent organic frameworks catalyzed by transition-metal nitrates[J]. Chemistry of Materials, 33, 3394-3400(2021).

    [54] Zhang M X, Mao X Z, Chen J C et al. Radiation-assisted assembly of a highly dispersed nanomolybdenum-functionalized covalent organic framework[J]. ACS Applied Materials & Interfaces, 16, 22504-22511(2024).

    [55] Zhong S C, Wang Y, Lan J H et al. Radiation-assisted synthesis of crown ether-modified covalent organic frameworks for lithium isotope separation[J]. CCS Chemistry, 6, 2594-2606(2024).

    [56] Zhong S C, Wang Y, Xie M S et al. Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal[J]. Chinese Chemical Letters, 110312(2024).

    [57] Jin E Q, Asada M, Xu Q et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks[J]. Science, 357, 673-676(2017).

    [58] Zhang B, Wei M F, Mao H Y et al. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions[J]. Journal of the American Chemical Society, 140, 12715-12719(2018).

    [59] Guan X Y, Li H, Ma Y C et al. Chemically stable polyarylether-based covalent organic frameworks[J]. Nature Chemistry, 11, 587-594(2019).

    [60] Pastoetter D L, Xu S Q, Borrelli M et al. Synthesis of vinylene-linked two-dimensional conjugated polymers via the horner–wadsworth–emmons reaction[J]. Angewandte Chemie International Edition, 59, 23620-23625(2020).

    Tools

    Get Citation

    Copy Citation Text

    Mingxing ZHANG, Junchang CHEN, Shu'ao WANG. Research process of radiation-induced synthesis and functionalization of covalent organic frameworks[J]. Journal of Radiation Research and Radiation Processing, 2024, 42(6): 060101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Oct. 20, 2024

    Accepted: Nov. 26, 2024

    Published Online: Jan. 15, 2025

    The Author Email: Shu'ao WANG (王殳凹)

    DOI:10.11889/j.1000-3436.2024-0096

    Topics