Acta Photonica Sinica, Volume. 44, Issue 12, 1228001(2015)

Classification of Hyperspectral Remote Sensing Images Based on Supervised Sparse Manifold Embedding

HUANG Hong*... YANG Ya-qiong, LUO Fu-lin and FENG Hai-liang |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(18)

    [2] [2] SUN W W, HALEVY A, BENEDETTO J, et al. UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification [J]. Journal of Photogrammetry and Remote Sensing, 2014, 89(2): 25-36.

    [4] [4] WEI Feng, HE Ming-yi, SHEN Zhi-ming, et al. Manifold based semi-supervised feature selection for hyperspectral data [J]. Acta Photonica Sinica, 2014, 43(6): 630002.

    [5] [5] SOWEIS S, SAUL L. Nonliner dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326.

    [6] [6] TENEBAUM J, SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323.

    [7] [7] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373-1396.

    [8] [8] HE X F, YAN S C, HU Y, et al. Face recognition using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.

    [9] [9] HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding [C]. Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China, 2005: 1208-1213.

    [10] [10] YAN S C, XU D, ZHANG B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.

    [11] [11] WANG Yong-mao, XU Zheng-guang, ZHAO Shan. Neighborhood graph embedding based local adaptive discriminant projection [J]. Journal of Electronics & Information Technology, 2013, 35(3): 633-638.

    [12] [12] QIAO L S, CHEN S C, TAN X Y. Sparsity preserving projections with application to face recognition [J]. Pattern Recognition, 2010, 43(1): 331-341.

    [13] [13] CLEMMENSEN L, HASTIE T, WITTEN D, et al. Sparse discriminant analysis [J]. Technometrics, 2011, 53(4): 406-413.

    [14] [14] ELHAMIIFAR E, VIDAL R. Sparse manifold clustering and embedding [C]. Neural Information Processing Systems, Granada, Spain, 2011: 55-63.

    [15] [15] GARCA-GMEZ J, GMEZ-SANCHIS J, ESCANDELL-MONTERO P, et al. Sparse manifold clustering and embedding to discriminate gene expression profiles of glioblastoma and meningioma tumors [J]. Computers in Biology and Medicine, 2013, 43(11): 1863-1869.

    [16] [16] Online:http://www.ehu.eus/ccwintco/index.php title=Hyperspectral_Remote_Sensing_Scenes.

    [17] [17] SUGIYAMA M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis [J]. Journal of Machine Learning Research, 2007, 8: 1027-1061.

    [18] [18] Online:http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetArticleView/tabid/9254/Article/476681/hypercube.aspx.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Hong, YANG Ya-qiong, LUO Fu-lin, FENG Hai-liang. Classification of Hyperspectral Remote Sensing Images Based on Supervised Sparse Manifold Embedding[J]. Acta Photonica Sinica, 2015, 44(12): 1228001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 26, 2015

    Accepted: --

    Published Online: Dec. 23, 2015

    The Author Email: Hong HUANG (hhuang@cqu.edu.cn)

    DOI:10.3788/gzxb20154412.1228001

    Topics