Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 73(2023)

Research Progress on S-Scheme Heterojunction Photocatalyst

JIANG Zicong1,*... ZHANG Liuyang2 and YU Jiaguo2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(61)

    [1] [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

    [2] [2] BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Adv Mater, 2021, 33(9): 2003521.

    [3] [3] ZHAO Z L, BIAN J, ZHAO L, et al. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation[J]. Chin J Catal, 2022, 43(5): 1331-1340.

    [5] [5] YANG X G, WANG D W. Photocatalysis: From fundamental principles to materials and applications[J]. ACS Appl Energy Mater, 2018, 1(12): 6657-6693.

    [6] [6] DI T M, XU Q L, HO W K, et al. Review on metal sulphide-based Z-scheme photocatalysts[J]. Chem Cat Chem, 2019, 11(5): 1394-1411.

    [7] [7] SAYED M, YU J G, LIU G, et al. Non-noble plasmonic metal-based photocatalysts[J]. Chem Rev, 2022, DOI: 10.1021/acs.chemrev.1c00473.

    [8] [8] LI J M, WU C C, LI J, et al. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution[J]. Chin J Catal, 2022, 43(2): 339-349.

    [9] [9] HE F, ZHU B C, CHENG B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Appl Catal B: Environ, 2020, 272: 119006.

    [12] [12] MATOBA K, MATSUDA Y, TAKAHASHI M, et al. Fabrication of Pt/In2S3/CuInS2 thin film as stable photoelectrode for water splitting under solar light irradiation[J]. Catal Today, 2021, 375: 87-93.

    [13] [13] XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.

    [14] [14] ENESCA A, ANDRONIC L. Photocatalytic activity of S-scheme heterostructure for hydrogen production and organic pollutant removal: A mini-review[J]. Nanomaterials, 2021, 11(4): 871.

    [15] [15] HASIJA V, KUMAR A, SUDHAIK A, et al. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review[J]. Environ Chem Lett, 2021, 19(4): 2941-2966.

    [16] [16] BARD A J. Phtotelectrochemistry and heterogeneous photocatalysis at semiconductors[J]. J Photochem, 1979, 10(1): 59-75.

    [17] [17] SAYAMA K, MUKASA K, ABE R, et al. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3?/I? shuttle redox mediator under visible light irradiation[J]. Chem Commun, 2001, (23): 2416-2417.

    [18] [18] WAGEH S, AL-GHAMDI A A, JAFER R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction[J]. Chin J Catal, 2021, 42(5): 667-669.

    [19] [19] ABE R, SHINMEI K, KOUMURA N, et al. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator[J]. J Am Chem Soc, 2013, 135(45): 16872-16884.

    [20] [20] SASAKI Y, KATO H, KUDO A. Co(bpy)(3) (3+/2+) and Co(phen)(3) (3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system[J]. J Am Chem Soc, 2013, 135(14): 5441-5449.

    [21] [21] TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nat Mater, 2006, 5(10): 782-786.

    [22] [22] WANG X W, LIU G, CHEN Z G, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chem Commun, 2009, (23): 3452-3454.

    [23] [23] YU W L, ZHANG S, CHEN J X, et al. Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution[J]. J Mater Chem A, 2018, 6(32): 15668-15674.

    [24] [24] GRATZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344.

    [25] [25] FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl Catal B: Environ, 2019, 243: 556-565.

    [26] [26] MA X H, LIU Y N, WANG Y P, et al. Amorphous CoSx growth on CaTiO3 nanocubes formed S-scheme heterojunction for photocatalytic hydrogen production[J]. Energy Fuels, 2021, 35(7): 6231-6239.

    [27] [27] JIANG G P, ZHENG C Y, YAN T, et al. Cd0.8Mn0.2S/MoO3 composites with an S-scheme heterojunction for efficient photocatalytic hydrogen evolution[J]. Dalton Trans, 2021, 50(15): 5360-5369.

    [28] [28] ZHU B C, TAN H Y, FAN J J, et al. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping[J]. J Materiomics, 2021, 7(5): 988-997.

    [29] [29] FEI X G, TAN H Y, CHENG B, et al. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations[J]. Acta Phys-Chim Sin, 2021, 37(6): 2010027.

    [30] [30] XU Q L, WAGEH S, AL-GHAMDI A A, et al. Design principle of S-scheme heterojunction photocatalyst[J]. J Mater Sci Technol, 2022, 124: 171-173.

    [31] [31] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme photocatalyst[J]. Adv Mater, 2022, 34(11): 2107668.

    [32] [32] DENG H Z, FEI X G, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chem Eng J, 2021, 409: 127377.

    [33] [33] WANG Z L, CHENG B, ZHANG L Y, et al. BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction[J]. Sol RRL, 2022, 6(1): 2100587.

    [34] [34] LI X B, LIU J Y, HUANG J T, et al. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance[J]. Acta Phys-Chim Sin, 2021, 37(6): 2010030.

    [35] [35] BAI J X, SHEN R C, JIANG Z M, et al. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based ohmic junctions for effective photocatalytic H2 generation[J]. Chin J Catal, 2022, 43(2): 359-369.

    [36] [36] LIU S C, WANG K, YANG M X, et al. Rationally designed Mn0.2Cd0.8S@CoAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production[J]. Acta Phys-Chim Sin, 2022, 38(7): 2109023.

    [37] [37] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chin J Catal, 2020, 41(1): 9-20.

    [38] [38] WAGEH S, AL-GHAMDI A A, AL-HARTOMY O A, et al. CdS/polymer S-scheme H2-production photocatalyst and its in-situ irradiated electron transfer mechanism[J]. Chin J Catal, 2022, 43(3): 586-588.

    [39] [39] HUANG Y, MEI F F, ZHANG J F, et al. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution[J]. Acta Phys-Chim Sin, 2022, 38(7): 2108028.

    [40] [40] ZHANG B, SHI H X, YAN Y J, et al. A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity[J]. Colloids Surf A, 2021, 608: 125598.

    [41] [41] CHENG C, HE B W, FAN J J, et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism[J]. Adv Mater, 2021, 33(22): 2100317.

    [42] [42] WANG X Y, WANG Y S, GAO M C, et al. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO[J]. Appl Catal B: Environ, 2020, 270: 118876.

    [43] [43] HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew Chem Int Ed, 2013, 52(29): 7372-7408.

    [44] [44] ZHANG Z Z, CAO Y X, ZHANG F H, et al. Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer[J]. Chem Eng J, 2022, 428: 131218.

    [45] [45] WANG L B, FEI X G, ZHANG L Y, et al. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst[J]. J Mater Sci Technol, 2022, 112: 1-10.

    [46] [46] SAYED M, ZHU B C, KUANG P Y, et al. EPR investigation on electron transfer of 2D/3D g-C3N4/ZnO S-scheme heterojunction for enhanced CO2 photoreduction[J]. Adv Sustain Syst, 2022, 6(1): 2100264.

    [47] [47] XU F Y, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat Commun, 2020, 11(1): 4613.

    [48] [48] WANG L C, CAO S, GUO K, et al. Simultaneous hydrogen and peroxide production by photocatalytic water splitting[J]. Chin J Catal, 2019, 40(3): 470-475.

    [49] [49] YANG Y, ZENG G M, HUANG D L, et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production[J]. Appl Catal B: Environ, 2020, 272: 118970.

    [50] [50] HAN G W, XU F Y, CHENG B, et al. Enhanced photocatalytic H2O2 production over inverse opal ZnO@polydopamine S-scheme heterojunctions[J]. Acta Phys-Chim Sin, 2022, 38(7): 2112037.

    [51] [51] LIU B W, BIE C B, ZHANG Y, et al. Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalyst for efficient H2O2 production[J]. Langmuir, 2021, 37(48): 14114-14124.

    [52] [52] JIANG Z C, CHENG B, ZHANG Y, et al. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production[J]. J Mater Sci Technol, 2022, 124: 193-201.

    [53] [53] RUEDA-MARQUEZ J J, LEVCHUK I, IBAEZ P F, et al. A critical review on application of photocatalysis for toxicity reduction of real wastewaters[J]. J Cleaner Prod, 2020, 258: 120694.

    [54] [54] KONSTANTINOU I K, ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations - A review[J]. Appl Catal B: Environ, 2004, 49(1): 1-14.

    [55] [55] CHEN G, YU Y, LIANG L, et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review[J]. J Hazard Mater, 2020, 408: 124461.

    [56] [56] DENG Y, ZHAO R Z. Advanced oxidation processes (AOPs) in wastewater treatment[J]. Curr Pollut Rep, 2015, 1(3): 167-176.

    [57] [57] ZHOU L, LI Y F, ZHANG Y K, et al. A 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunction with rapid interfacial charges migration for photocatalytic antibiotic degradation[J]. Acta Phys-Chim Sin, 2022, 38(7): 2112027.

    [58] [58] HE R G, OU S J, LIU Y X, et al. In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity[J]. Chin J Catal, 2022, 43(2): 370-378.

    [59] [59] WANG J, WANG G H, CHENG B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J]. Chin J Catal, 2021, 42(1): 56-68.

    [60] [60] XIA P F, CAO S W, ZHU B C, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angew Chem Int Ed, 2020, 59(13): 5218-5225.

    [61] [61] CORRIGAN N, SHANMUGAM S, XU J T, et al. Photocatalysis in organic and polymer synthesis[J]. Chem Soc Rev, 2016, 45(22): 6165-6212.

    [62] [62] BORODKIN G I, SHUBIN V G. Progress and prospects in the use of photocatalysis for the synthesis of organofluorine compounds[J]. Russ Chem Rev, 2019, 88(2): 160-203.

    [63] [63] CHENG H J, XU W T. Recent advances in modified TiO2 for photo-induced organic synthesis[J]. Org Biomol Chem, 2019, 17(47): 9977-9989.

    [64] [64] XU F Y, MENG K, CAO S, et al. Step-by-step mechanism insights into the TiO2/Ce2S3 S-scheme photocatalyst for enhanced aniline production with water as a proton source[J]. ACS Catal, 2022, 12(1): 164-172.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Zicong, ZHANG Liuyang, YU Jiaguo. Research Progress on S-Scheme Heterojunction Photocatalyst[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 73

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jul. 19, 2022

    Accepted: --

    Published Online: Mar. 10, 2023

    The Author Email: Zicong JIANG (whut_jzc@163.com)

    DOI:10.14062/j.issn.0454-5648.20220459

    Topics