Advanced Fiber Materials, Volume. 7, Issue 1, 00489(2025)

Bioactive MgO/MgCO3/Polycaprolactone Multi-gradient Fibers Facilitate Peripheral Nerve Regeneration by Regulating Schwann Cell Function and Activating Wingless/Integrase-1 Signaling

Zhi Yao1、†, Ziyu Chen1、†, Xuan He4、†, Yihao Wei1, Junyu Qian1, Qiang Zong2, Shuxian He3, Lili Song6, Lijia Ma7, Sien Lin8, Linlong Li8,9, Lixiang Xue5, Siu Ngor Fu2, Jin Zhang3、*, Ye Li2,9、**, and Deli Wang1、***
Author Affiliations
  • 1Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518000, China
  • 2Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
  • 3College of Chemical Engineering, Fuzhou University, Fuzhou 350000, China
  • 4Orthopedic Department, Peking University Third Hospital, Beijing 100000, China
  • 5Cancer Center of Peking University Third Hospital, Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100000, China
  • 6Department of Hand and Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518000, China
  • 7Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, China
  • 8Musculoskeletal Research Laboratory of Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
  • 9Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China
  • show less
    References(63)

    [1] [1] Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the novel multifunctional nerve guidance conduits: from specific regenerative procedures to motor function rebuilding. Adv Mater. 2024;36:e2307805.

    [2] [2] Richards JT, Baird MD, Tintle SM, Souza JM, Renninger CH, Potter BK. Peripheral nerve management in extremity amputations. Orthop Clin North Am. 2022;53:155.

    [3] [3] Gong B, Zhang X, Zahrani AA, Gao W, Ma G, Zhang L, Xue J. Neural tissue engineering: from bioactive scaffolds and in situ monitoring to regeneration. Exploration. 2022;2:20210035.

    [4] [4] Liu J, Song Q, Yin W, Li C, An N, Le Y, Wang Q, Feng Y, Hu Y, Wang Y. Bioactive scaffolds for tissue engineering: a review of decellularized extracellular matrix applications and innovations. Exploration. 2024, 20230078.

    [5] [5] Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35:6143.

    [6] [6] Xia B, Gao X, Qian J, Li S, Yu B, Hao Y, Wei B, Ma T, Wu H, Yang S, Zheng Y, Gao X, Guo L, Gao J, Yang Y, Zhang Y, Wei Y, Xue B, Jin Y, Luo Z, Zhang J, Huang J. A novel superparamagnetic multifunctional nerve scaffold: a remote actuation strategy to boost in situ extracellular vesicles production for enhanced peripheral nerve repair. Adv Mater. 2024;36:e2305374.

    [7] [7] Yang Y, Yin X, Wang H, Qiu W, Li L, Li F, Shan Y, Zhao Z, Li Z, Guo J, Zhang J, Zhao Y. Engineering a wirelessly self-powered and electroconductive scaffold to promote peripheral nerve regeneration. Nano Energy. 2023;107:108145.

    [8] [8] Ye L, Xu J, Mi J, He X, Pan Q, Zheng L, Zu H, Chen Z, Dai B, Li X, Pang Q, Zou L, Zhou L, Huang L, Tong W, Li G, Qin L. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials. 2021;275:120984.

    [9] [9] He X, Li Y, Miao H, Xu J, Ong MT-y, Wang C, Zheng L, Wang J, Huang L, Zu H, Yao Z, Mi J, Dai B, Li X, Yung PS-h, Yuan G, Qin L. High formability Mg-Zn-Gd wire facilitates ACL reconstruction via its swift degradation to accelerate intra-tunnel endochondral ossification. J Magnes Alloy. 2024, 12:295.

    [10] [10] Nabiyouni M, Bruckner T, Zhou H, Gbureck U, Bhaduri SB. Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 2018;66:23.

    [11] [11] Zhang J, Zhang B, Zhang J, Lin W, Zhang S. Magnesium promotes the regeneration of the peripheral nerve. Front Cell Dev Biol. 2021;9:717854.

    [12] [12] Cai Y, Chen Y, Zhang G, Lin Y, Zhang J, Liang J, Lv L, Wang Y, Fang X, Dang X. The GDNF-gel/HA-Mg conduit promotes the repair of peripheral nerve defects by regulating PPAR-gamma/RhoA/ROCK signaling pathway. iScience. 2024, 27, 108969.

    [13] [13] Monfared A, Ghaee A, Ebrahimi-Barough S. Fabrication of tannic acid/poly(N-vinylpyrrolidone) layer-by-layer coating on Mg-based metallic glass for nerve tissue regeneration application. Colloids Surf B Biointerfaces. 2018;170:617.

    [14] [14] Vennemeyer JJ, Hopkins T, Hershcovitch M, Little KD, Hagen MC, Minteer D, Hom DB, Marra K, Pixley SK. Initial observations on using magnesium metal in peripheral nerve repair. J Biomater Appl. 2015;29:1145.

    [15] [15] Chen YJ, Cheng FC, Chen CJ, Su HL, Sheu ML, Sheehan J, Pan HC. Down-regulated expression of magnesium transporter genes following a high magnesium diet attenuates sciatic nerve crush injury. Neurosurgery. 2019;84:965.

    [16] [16] Hu T, Xu H, Wang C, Qin H, An Z. Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation. Sci Rep. 2018;8:3406.

    [17] [17] Yao Z, Yuan W, Xu J, Tong W, Mi J, Ho PC, Chow DHK, Li Y, Yao H, Li X, Xu S, Guo J, Zhu Q, Bian L, Qin L. Magnesium-encapsulated injectable hydrogel and 3D-engineered polycaprolactone conduit facilitate peripheral nerve regeneration. Adv Sci (Weinh). 2022;9:e2202102.

    [18] [18] Huang J, Zhang G, Li S, Li J, Wang W, Xue J, Wang Y, Fang M, Zhou N. Endothelial cell-derived exosomes boost and maintain repair-related phenotypes of Schwann cells via miR199-5p to promote nerve regeneration. J Nanobiotechnol. 2023;21:10.

    [19] [19] Chen B, Banton MC, Singh L, Parkinson DB, Dun XP. Single cell transcriptome data analysis defines the heterogeneity of peripheral nerve cells in homeostasis and regeneration. Front Cell Neurosci. 2021;15:624826.

    [20] [20] Cao S, Wei Y, Yao Z, Yue Y, Deng J, Xu H, Sheng W, Yu F, Liu P, Xiong A, Zeng H. A bibliometric and visualized analysis of nanoparticles in musculoskeletal diseases (from 2013 to 2023). Comput Biol Med. 2024;169:107867.

    [21] [21] Yao Z, Xu J, Shen J, Qin L, Yuan W. Biomimetic hierarchical nanocomposite hydrogels: from design to biomedical applications. J Compos Sci. 2022;6:340.

    [22] [22] Fei J, Wen X, Lin X, Saijilafu, Wang W, Ren O, Chen X, Tan L, Yang K, Yang H, Yang L. Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs. Mater Sci Eng C Mater Biol Appl. 2017, 78, 1155.

    [23] [23] Deng R, Luo Z, Rao Z, Lin Z, Chen S, Zhou J, Zhu Q, Liu X, Bai Y, Quan D. Decellularized extracellular matrix containing electrospun fibers for nerve regeneration: a comparison between core-shell structured and preblended composites. Adv Fiber Mater. 2022;4:503.

    [24] [24] Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 1976;2017:50.

    [25] [25] Fang Y, Wang C, Liu Z, Ko J, Chen L, Zhang T, Xiong Z, Zhang L, Sun W. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv Sci (Weinh). 2023;10:e2205744.

    [26] [26] Ma T, Hao Y, Li S, Xia B, Gao X, Zheng Y, Mei L, Wei Y, Yang C, Lu L, Luo Z, Huang J. Sequential oxygen supply system promotes peripheral nerve regeneration by enhancing Schwann cells survival and angiogenesis. Biomaterials. 2022;289:121755.

    [27] [27] Dong X, Wu P, Yan L, Liu K, Wei W, Cheng Q, Liang X, Chen Y, Dai H. Oriented nanofibrous P(MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials. 2022;280:121288.

    [28] [28] Yuan Z, Wei P, Huang Y, Zhang W, Chen F, Zhang X, Mao J, Chen D, Cai Q, Yang X. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater. 2019;85:294.

    [29] [29] Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized bandages carrying magnesium oxide nanoparticles induce cortical bone formation by modulating endogenous periosteal cells. ACS Nano. 2022;16:18071.

    [30] [30] Xiao W, Chen Y, Pan G, Yan J, Zhang J, Gao J. Hydrophobic, hemostatic and durable nanofiber composites with a screw-like surface architecture for multifunctional sensing electronics. Adv Fiber Mater. 2023;5:2040.

    [31] [31] Zou JL, Liu S, Sun JH, Yang WH, Xu YW, Rao ZL, Jiang B, Zhu QT, Liu XL, Wu JL, Chang C, Mao HQ, Ling EA, Quan DP, Zeng YS. Peripheral nerve-derived matrix hydrogel promotes remyelination and inhibits synapse formation. Adv Funct Mater. 2018;28:1.

    [32] [32] Xu S, Zhang Y, Dai B, Rao J, Deng F, Zhang Sa, Shao H, Li X, Jin Z, Liang T, Yang Y, Li Y, Chen Z, Tong W, Xu J, Ning C, Qin L. Green‐prepared magnesium silicate sprays enhance the repair of burn‐skin wound and appendages regeneration in rats and minipigs. Adv Funct Mater. 2023, 34, 2307439.

    [33] [33] Xu J, Hu P, Zhang X, Chen J, Wang J, Zhang J, Chen Z, Yu MK, Chung YW, Wang Y, Zhang X, Zhang Y, Zheng N, Yao H, Yue J, Chan HC, Qin L, Ruan YC. Magnesium implantation or supplementation ameliorates bone disorder in CFTR-mutant mice through an ATF4-dependent Wnt/beta-catenin signaling. Bioact Mater. 2022;8:95.

    [34] [34] Fazal SV, Gomez-Sanchez JA, Wagstaff LJ, Musner N, Otto G, Janz M, Mirsky R, Jessen KR. Graded elevation of c-Jun in Schwann cells in vivo: gene dosage determines effects on development, remyelination, tumorigenesis, and hypomyelination. J Neurosci. 2017;37:12297.

    [35] [35] Li Y, Yang B, Wang Y, Huang Z, Wang J, Pu X, Wen J, Ao Q, Xiao K, Wu J, Yin G. Postoperatively noninvasive optogenetic stimulation via upconversion nanoparticles enhancing sciatic nerve repair. Nano Lett. 2024;24:5403.

    [36] [36] Mohamed T, Colciago A, Montagnani Marelli M, Moretti RM, Magnaghi V. Protein kinase C epsilon activation regulates proliferation, migration, and epithelial to mesenchymal-like transition in rat Schwann cells. Front Cell Neurosci. 2023;17:1237479.

    [37] [37] Chang L, Yao H, Yao Z, Ho KK, Ong MT, Dai B, Tong W, Xu J, Qin L. Comprehensive analysis of key genes, signaling pathways and mirnas in human knee osteoarthritis: based on bioinformatics. Front Pharmacol. 2021;12:730587.

    [38] [38] Mi J, Xu JK, Yao Z, Yao H, Li Y, He X, Dai BY, Zou L, Tong WX, Zhang XT, Hu PJ, Ruan YC, Tang N, Guo X, Zhao J, He JF, Qin L. Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv Sci. 2022;9:e2103005.

    [39] [39] Qiu S, Rao Z, He F, Wang T, Xu Y, Du Z, Yao Z, Lin T, Yan L, Quan D, Zhu Q, Liu X. Decellularized nerve matrix hydrogel and glial-derived neurotrophic factor modifications assisted nerve repair with decellularized nerve matrix scaffolds. J Tissue Eng Regen Med. 2020;14:931.

    [40] [40] He FL, Qiu S, Zou JL, Gu FB, Yao Z, Tu ZH, Wang YY, Liu XL, Zhou LH, Zhu QT. Covering the proximal nerve stump with chondroitin sulfate proteoglycans prevents traumatic painful neuroma formation by blocking axon regeneration after neurotomy in Sprague Dawley rats. J Neurosurg. 2021;134:1599.

    [41] [41] Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, Quan D, Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater. 2018;73:326.

    [42] [42] Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients. 2021;13(4):1136.

    [43] [43] W X, J Y, Y S, Q W. The effect of magnesium deficiency on neurological disorders: a narrative review article. Iran. J. Public Health. 2019, 48, 379.

    [44] [44] Cherian KN, Keynan JN, Anker L, Faerman A, Brown RE, Shamma A, Keynan O, Coetzee JP, Batail JM, Phillips A, Bassano NJ, Sahlem GL, Inzunza J, Millar T, Dickinson J, Rolle CE, Keller J, Adamson M, Kratter IH, Williams NR. Magnesium-ibogaine therapy in veterans with traumatic brain injuries. Nat Med. 2024;30:373.

    [45] [45] Wang JL, Xu JK, Hopkins C, Chow DH, Qin L. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv Sci. 2020;7:1902443.

    [46] [46] Lu X, Cai H, Li YR, Zheng X, Yun J, Li W, Geng X, Kwon JS, Jiang HB. A systematic review and network meta-analysis of biomedical mg alloy and surface coatings in orthopedic application. Bioinorg Chem Appl. 2022;2022:4529520.

    [47] [47] Shin CH, Lee HY, Gyan-Barimah C, Yu JH, Yu JS. Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chem Soc Rev. 2023;52:2145.

    [48] [48] Wu Q, Xu S, Wang F, He B, Wang X, Sun Y, Ning C, Dai K. Double-edged effects caused by magnesium ions and alkaline environment regulate bioactivities of magnesium-incorporated silicocarnotite in vitro. Regen Biomater. 2021, 8, rbab016.

    [49] [49] Salzer J, Feltri ML, Jacob C. Schwann cell development and myelination. CSH Perspect Biol. 2024;16(9):a041360.

    [50] [50] Scherer SS, Svaren J. Peripheral nervous system (PNS) myelin diseases. CSH Perspect Biol. 2024;16(5):a041376.

    [51] [51] Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater. 2022;11:57.

    [52] [52] Sowa Y, Kishida T, Tomita K, Yamamoto K, Numajiri T, Mazda O. Direct conversion of human fibroblasts into Schwann cells that facilitate regeneration of injured peripheral nerve in vivo. Stem Cells Transl Med. 2017;6:1207.

    [53] [53] Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, Mirsky R, Jessen KR. After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair schwann cells, which shorten radically on remyelination. J Neurosci. 2017;37:9086.

    [54] [54] Rattner A, Wang Y, Nathans J. Signaling pathways in neurovascular development. Annu Rev Neurosci. 2022;45:87.

    [55] [55] Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022;91:571.

    [56] [56] Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.

    [57] [57] Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res. 2023;95:101149.

    [58] [58] Liu YJ, Chen XF, Zhou LP, Rao F, Zhang DY, Wang YH. A nerve conduit filled with Wnt5a-loaded fibrin hydrogels promotes peripheral nerve regeneration. CNS Neurosci Ther. 2022;28:145.

    [59] [59] van Vliet AC, Lee J, van der Poel M, Mason MRJ, Noordermeer JN, Fradkin LG, Tannemaat MR, Malessy MJA, Verhaagen J, De Winter F. Coordinated changes in the expression of Wnt pathway genes following human and rat peripheral nerve injury. PLoS ONE. 2021;16:e0249748.

    [60] [60] Takahashi K, Yoshida T, Wakamori M. Periodontal ligaments enhance neurite outgrowth in trigeminal ganglion neurons through Wnt5a production induced by mechanical stimulation. Am J Physiol Cell Physiol. 2022;323:C1704.

    [61] [61] Li L, Hutchins BI, Kalil K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive turning through distinct signaling mechanisms. Sci Signal. 2010, 3, pt2.

    [62] [62] Li L, Hutchins BI, Kalil K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J Neurosci. 2009;29:5873.

    [63] [63] Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol. 2019;319:112761.

    Tools

    Get Citation

    Copy Citation Text

    Zhi Yao, Ziyu Chen, Xuan He, Yihao Wei, Junyu Qian, Qiang Zong, Shuxian He, Lili Song, Lijia Ma, Sien Lin, Linlong Li, Lixiang Xue, Siu Ngor Fu, Jin Zhang, Ye Li, Deli Wang. Bioactive MgO/MgCO3/Polycaprolactone Multi-gradient Fibers Facilitate Peripheral Nerve Regeneration by Regulating Schwann Cell Function and Activating Wingless/Integrase-1 Signaling[J]. Advanced Fiber Materials, 2025, 7(1): 00489

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 13, 2024

    Accepted: Sep. 29, 2024

    Published Online: Mar. 14, 2025

    The Author Email: Zhang Jin (J_Zhang929@fzu.edu.cn), Li Ye (yeli@link.cuhk.edu.hk), Wang Deli (wangdelinavy@163.com)

    DOI:10.1007/s42765-024-00489-3

    Topics