Optics and Precision Engineering, Volume. 32, Issue 6, 843(2024)

Image super-resolution network based on multi-scale adaptive attention

Ying ZHOU1,2、*, Shenghu PEI1, Haiyong CHEN1,2, and Shibo XU1
Author Affiliations
  • 1School of Artificial Intelligence, Hebei University of Technology, Tianjin30030, China
  • 2China Hebei Control Engineering Research Center, Tianjin300130, China
  • show less
    References(33)

    [1] HIJJI M, KHAN A, ALWAKEEL M M et al. Intelligent image super-resolution for vehicle license plate in surveillance applications[J]. Mathematics, 11, 892(2023).

    [2] CHEN S L, OGAWA Y, ZHAO C B et al. Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 129-152(2023).

    [3] WU Q, LI Y W, SUN Y W et al. An arbitrary scale super-resolution approach for 3D MR images via implicit neural representation[J]. IEEE Journal of Biomedical and Health Informatics, 27, 1004-1015(2023).

    [4] DONG C, LOY C C, HE K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [5] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [6] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [7] TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C], 21, 2790-2798(2017).

    [8] KIM H et al. Enhanced deep residual networks for single image super-resolution[C], 21, 1132-1140(2017).

    [9] [9] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500.(in Chinese). doi: 10.37188/OPE.20223020.2489

    [10] CAI Q, LI J X, LI H F et al. TDPN: texture and detail-preserving network for single image super-resolution[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 31, 2375-2389(2022).

    [11] LIU F Q, YANG X M, DE BAETS B. A deep recursive multi-scale feature fusion network for image super-resolution[J]. Journal of Visual Communication and Image Representation, 90, 103730(2023).

    [12] [12] 许娇, 袁三男. 增强型多尺度残差网络的图像超分辨率重建算法[J]. 激光与光电子学进展, 2023, 60(4): 3788/LOP212884. doi: 10.3788/LOP212884XUJ, YUANS N. Image super-resolution reconstruction algorithm based on enhanced multi-scale residual network[J]. Laser & Optoelectronics Progress, 2023, 60(4): 3788/LOP212884.(in Chinese). doi: 10.3788/LOP212884

    [13] NIU B, WEN W L, REN W Q et al[M]. Single Image Super-Resolution via a Holistic Attention Network, 191-207(2020).

    [14] [14] 王杰, 徐国明, 马健, 等. 轻量级注意力级联网络的偏振计算成像超分辨率重建[J]. 光学 精密工程, 2022, 30(19): 2404-2419. doi: 10.37188/OPE.20223019.2404WANGJ, XUG M, MAJ, et al. Polarization computational imaging super-resolution reconstruction with lightweight attention cascading network[J]. Opt. Precision Eng., 2022, 30(19): 2404-2419.(in Chinese). doi: 10.37188/OPE.20223019.2404

    [15] SU J N, GAN M, CHEN G Y et al. Global learnable attention for single image super-resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-12(2023).

    [16] BEHJATI P, RODRIGUEZ P, FERN\'ANDEZ C et al. Single image super-resolution based on directional variance attention network[J]. Pattern Recognition, 133, 108997(2023).

    [17] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C], 21, 1122-1131(2017).

    [18] BEVILACQUA M, ROUMY A, GUILLEMOT C et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C], 135(2012).

    [19] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C], 711-730(2012).

    [20] ARBELÁEZ P, MAIRE M, FOWLKES C et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 898-916(2011).

    [21] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C], 7, 5197-5206(2015).

    [22] WANG Y J, LI J H, LU Y et al. Image quality evaluation based on image weighted separating block peak signal to noise ratio[C]. Nanjing. IEEE, 994-997(2003).

    [23] WANG Z, BOVIK A C, SHEIKH H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [24] KINGMA DP, BA J L. Adam: a method for stochastic optimization[J]. arXiv preprint(2014).

    [25] WANG Q L, WU B G, ZHU P F et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C], 13, 11531-11539(2020).

    [26] WOO S H, PARK J, LEE J Y et al. CBAM: convolutional block attention module[C], 3-19(2018).

    [28] WANG X H, WANG Q, ZHAO Y Z et al[M]. Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning, 268-285(2021).

    [29] ZHANG Y L, TIAN Y P, KONG Y et al. Residual dense network for image super-resolution[C], 18, 2472-2481(2018).

    [30] LIU C, LEI P C. An efficient group skip-connecting network for image super-resolution[J]. Knowledge-Based Systems, 222, 107017(2021).

    [31] ANWAR S, BARNES N. Densely residual Laplacian super-resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1192-1204(2022).

    [32] LIANG J Y, CAO J Z, SUN G L et al. Swinir: image restoration using swin transformer[C], 11, 1833-1844(2021).

    [33] ZUO Y F, XIE J C, WANG H et al. Gradient-guided single image super-resolution based on joint trilateral feature filtering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 33, 505-520(2023).

    CLP Journals

    [1] Yulan HAN, Yihong LUO, Yujie CUI, Chaofeng LAN. Super-resolution reconstruction of text image with multimodal semantic interaction[J]. Optics and Precision Engineering, 2025, 33(1): 135

    [2] Yichuan YANG, Zhongqi MA, Xinyao ZHOU, Fujian ZHENG, Hong HUANG. Spatial adaptation and frequency fusion network for single remote sensing image super-resolution[J]. Optics and Precision Engineering, 2025, 33(8): 1238

    [3] Yulan HAN, Yihong LUO, Yujie CUI, Chaofeng LAN. Super-resolution reconstruction of text image with multimodal semantic interaction[J]. Optics and Precision Engineering, 2025, 33(1): 135

    [4] Yichuan YANG, Zhongqi MA, Xinyao ZHOU, Fujian ZHENG, Hong HUANG. Spatial adaptation and frequency fusion network for single remote sensing image super-resolution[J]. Optics and Precision Engineering, 2025, 33(8): 1238

    Tools

    Get Citation

    Copy Citation Text

    Ying ZHOU, Shenghu PEI, Haiyong CHEN, Shibo XU. Image super-resolution network based on multi-scale adaptive attention[J]. Optics and Precision Engineering, 2024, 32(6): 843

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 23, 2023

    Accepted: --

    Published Online: Apr. 19, 2024

    The Author Email: Ying ZHOU (zhouying2007@163.com)

    DOI:10.37188/OPE.20243206.0843

    Topics