Laser & Optoelectronics Progress, Volume. 58, Issue 10, 1011005(2021)

Recent Progress of Imaging Applications Based on Superconducting Nanowire Single-Photon Detectors

Hui Zhou1,2、**, Chengjun Zhang1,2, Chaolin Lü1,2, Xingyu Zhang1,2, Hao Li1,2,3, Lixing You1,2,3、*, and Zhen Wang1,2,3
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(82)

    [1] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 3, 696-705(2009).

    [7] Lita A E, Miller A J, Nam S W et al. Counting near-infrared single-photons with 95% efficiency[J]. Optics Express, 16, 3032-3040(2008).

    [14] Wollman E E, Verma V B, Beyer A D et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature[J]. Optics Express, 25, 26792-26801(2017).

    [18] Gol’tsman G N, Okunev O, Chulkova G et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 79, 705-707(2001).

    [19] Gol’tsman G, Okunev O, Chulkova G et al. Fabrication and properties of an ultrafast NbN hot-electron single-photon detector[J]. IEEE Transactions on Applied Superconductivity, 11, 574-577(2001).

    [22] Vinokur A G A V M. Comment on “vortex-assisted photon count and their magnetic field dependence in single-photon superconducting detectors”[J]. Physical Review B, Condensed Matter, 86, 026501(2012).

    [30] Huang Y, Wang L, Hu W D et al. Efficient signal emitters and detectors[J]. Scientia Sinica (Informationis), 46, 1035-1052(2016).

    [32] Zhou H, Pan Y M, You L X et al. Superconducting nanowire single photon detector with efficiency over 60% for 2-μm-wavelength[J]. IEEE Photonics Journal, 11, 1-7(2019).

    [34] Reddy D V, Nerem R R, Nam S W et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm[J]. Optica, 7, 1649-1653(2020).

    [36] Zadeh I E, Los J W N, Gourgues R B M et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution[J]. APL Photonics, 2, 111301(2017).

    [37] Lanzagorta M. Quantum radar[J]. Synthesis Lectures on Quantum Computing, 3, 1-139(2011).

    [38] Karp S, Stotts L B. Fundamentals of electro-optic systems design[M](2012).

    [41] Becker W. The bh TCSPC handbook[J]. Scanning, 800, 1-566(2010).

    [42] Warburton R E, McCarthy A, Wallace A M et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength[J]. Optics Letters, 32, 2266-2268(2007).

    [49] Zhou H, He Y H, You L X et al. Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector[J]. Optics Express, 23, 14603-14611(2015).

    [54] Wollman E E, Verma V B, Lita A E et al. Kilopixel array of superconducting nanowire single-photon detectors[J]. Optics Express, 27, 35279-35289(2019).

    [57] Valencia A, Scarcelli G, D’Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [60] Takhar D, Laska J N, Wakin M B et al. A new compressive imaging camera architecture using optical-domain compression[J]. Proceedings of the SPIE, 6065, 606509(2006).

    [63] Li J, Pan Y Y, Li J S et al. Compressive holographic imaging based on single in-line hologram and superconducting nanowire single-photon detector[J]. Optics Communications, 355, 326-330(2015).

    [64] Gerrits T, Allman S, Lum D J et al. Progress toward a high-resolution single-photon camera based on superconducting single photon detector arrays and compressive sensing[C]. //2015 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2015, San Jose, CA, USA., 1-2(2015).

    [66] Dong S, Zhang W, Huang Y D et al. Long-distance temporal quantum ghost imaging over optical fibers[J]. Scientific Reports, 6, 26022(2016).

    [67] Yao X, Zhang W, Li H et al. Long-distance thermal temporal ghost imaging over optical fibers[J]. Optics Letters, 43, 759-762(2018).

    [68] Yao X, Liu X, You L X et al. Quantum secure ghost imaging[J]. Physical Review A, 98, 063816(2018).

    [72] Zadeh I E, Los J W N, Gourgues R B M et al. Efficient single-photon detection with 7.7 ps time resolution for photon-correlation measurements[J]. ACS Photonics, 7, 1780-1787(2020).

    [74] Wang Y, Tang Q, Ma J T et al. Overview of 2020 precision guided weapons guidance technology development[J]. Aerodynamic Missile Journal, 31-38(2021).

    [80] Korneeva Y, Vodolazov D, Semenov A et al. Optical single-photon detection in micrometer-scale NbN bridges[J]. Physical Review Applied, 9, 064037(2018).

    [81] Charaev I, Morimoto Y, Dane A et al. Large-area microwire MoSi single-photon detectors at 1550 nm wavelength[J]. Applied Physics Letters, 116, 242603(2020).

    [83] Ejrnaes M, Parlato L, Arpaia R et al. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics[J]. Superconductor Science and Technology, 30, 12LT02(2017).

    [84] Kotsubo V, Radebaugh R, Hendershott P et al. Compact 2.2 K cooling system for superconducting nanowire single photon detectors[J]. IEEE Transactions on Applied Superconductivity, 27, 1-5(2017).

    [85] Gemmell N R, Hills M, Bradshaw T et al. A miniaturized 4 K platform for superconducting infrared photon counting detectors[J]. Superconductor Science and Technology, 30, 11LT01(2017).

    [86] You L X, Quan J, Wang Y et al. Superconducting nanowire single photon detection system for space applications[J]. Optics Express, 26, 2965-2971(2018).

    Tools

    Get Citation

    Copy Citation Text

    Hui Zhou, Chengjun Zhang, Chaolin Lü, Xingyu Zhang, Hao Li, Lixing You, Zhen Wang. Recent Progress of Imaging Applications Based on Superconducting Nanowire Single-Photon Detectors[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Feb. 1, 2021

    Accepted: Mar. 5, 2021

    Published Online: May. 28, 2021

    The Author Email: Zhou Hui (zhouhui@mial.sim.ac.cn), You Lixing (lxyou@mail.sim.ac.cn)

    DOI:10.3788/LOP202158.1011005

    Topics