Journal of Applied Optics, Volume. 40, Issue 3, 440(2019)

Image denoising algorithm based on information preservation network

CHEN Qingjiang1、*, SHI Xiaohan1, and CHAI Yuzhou2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [3] [3] BIJALWAN A, GOYAL A, SETHI N. Wavelet transform based image denoise using threshold approaches[J]. International Journal of Engineering & Advanced Technology, 2012(5):218-221.

    [4] [4] AHARON M, ELAD M, BRUCKSTEIN A. The K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322.

    [5] [5] DONG W, ZHANG L, SHI G, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2013, 22(4):1620.

    [6] [6] JIAO Lijuan, WANG Wenjian, ZHAO Qingshan, et al. Nearest neighbor local OMP sparse representation for image denoising [J]. Journal of Image and Graphics, 2017, 22 (11): 1486-1492.

    [7] [7] DABOV K , FOI A , KATKOVNIK V , et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095.

    [8] [8] BANSAL M, DEVI M, JAIN N, et al. A proposed approach for biomedical image denoising using PCA_NLM[J]. International Journal of Bio-Science & Bio-Technology, 2014, 6(6):13-20.

    [9] [9] HAN Zhen, WANG Hongbin, YU Zhengtao, et al. Bilateral non-local mean filter image denoising algorithm [J]. Transducer and Microsystem Technologies, 2016, 35 (6): 124-127.

    [10] [10] HARMELING S, SCHULER C J, BURGER H C. Image denoising: Can plain neural networks compete with BM3D[C]//Providence,RI,USA:IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2012:2392-2399.

    [11] [11] PAREKH A, SELESNICK I W. Convex denoising using non-convex tight frame regularization[J]. IEEE Signal Processing Letters, 2015, 22(10):1786-1790.

    [12] [12] ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[J]. 2011, 6669(5):479-486.

    [14] [14] MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J].IEEE/Transactions on Pattern Analysis and Machine Intelligence,2004,26(5):530-549.

    [15] [15] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Single-image super-resolution via linear mapping of interpolated self-examples[J]. IEEE Transactions on Image Processing, 2014, 23(12):5334-47.

    [16] [16] ZHANG K, GAO X, TAO D, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012, 21(11):4544-4556.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Qingjiang, SHI Xiaohan, CHAI Yuzhou. Image denoising algorithm based on information preservation network[J]. Journal of Applied Optics, 2019, 40(3): 440

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 11, 2018

    Accepted: --

    Published Online: Jun. 10, 2019

    The Author Email: Qingjiang CHEN (qjchen66xytu@126.com)

    DOI:10.5768/jao201940.0302006

    Topics