Optics and Precision Engineering, Volume. 30, Issue 16, 1955(2022)
Positioning error compensation of 6-DOF robots based on anisotropic error similarity
[1] [1] 1周炜, 廖文和, 田威, 等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J]. 中国机械工程, 2012, 23(19): 2306-2311. doi: 10.3969/j.issn.1004-132X.2012.19.008ZHOUW, LIAOW H, TIANW, et al. Robot accuracy compensation method of spatial grid for aircraft automatic assembly[J]. China Mechanical Engineering, 2012, 23(19): 2306-2311.(in Chinese). doi: 10.3969/j.issn.1004-132X.2012.19.008
[2] C CHEN, F Y PENG, R YAN et al. Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robotics and Computer-Integrated Manufacturing, 55, 29-40(2019).
[3] T SUN, C Y LIU, B B LIAN et al. Calibration for precision kinematic control of an articulated serial robot. IEEE Transactions on Industrial Electronics, 68, 6000-6009(2021).
[4] [4] 4花芳芳, 田威, 胡俊山, 等. 基于深度神经网络的机器人定位误差补偿方法[J]. 航空制造技术, 2020, 63(17): 78-85. doi: 10.1109/cac51589.2020.9327212HUAF F, TIANW, HUJ S, et al. Robot positioning error compensation method based on deep neural network[J]. Aeronautical Manufacturing Technology, 2020, 63(17): 78-85.(in Chinese). doi: 10.1109/cac51589.2020.9327212
[5] P YANG, Z G GUO, Y B KONG. Plane kinematic calibration method for industrial robot based on dynamic measurement of double ball bar. Precision Engineering, 62, 265-272(2020).
[6] [6] 6李广云, 罗豪龙, 王力. 机器人工具坐标系的快速标定方法[J]. 光学 精密工程, 2021, 29(6): 1375-1386. doi: 10.37188/OPE.20212906.1375LIG Y, LUOH L, WANGL. Fast calibration method of robot tool coordinate[J]. Opt. Precision Eng., 2021, 29(6): 1375-1386.(in Chinese). doi: 10.37188/OPE.20212906.1375
[7] [7] 7于连栋, 曹家铭, 赵会宁, 等. 关节臂式坐标测量机的运动学建模[J]. 光学 精密工程, 2021, 29(11): 2603-2612. doi: 10.37188/OPE.20212911.2603YUL D, CAOJ M, ZHAOH N, et al. Kinematics model of articulated arm measuring machine[J]. Opt. Precision Eng., 2021, 29(11): 2603-2612.(in Chinese). doi: 10.37188/OPE.20212911.2603
[8] Y H GAN, J J DUAN, X Z DAI. A calibration method of robot kinematic parameters by drawstring displacement sensor. International Journal of Advanced Robotic Systems, 16, 172988141988307(2019).
[9] M GROTJAHN, M DAEMI, B HEIMANN. Friction and rigid body identification of robot dynamics. International Journal of Solids and Structures, 38, 1889-1902(2001).
[10] Z H JIANG, W G ZHOU, H LI et al. A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Transactions on Industrial Electronics, 65, 3337-3345(2018).
[11] [11] 11乔贵方, 吕仲艳, 张颖, 等. 基于BAS-PSO算法的机器人定位精度提升[J]. 光学 精密工程, 2021, 29(4): 763-771. doi: 10.37188/OPE.20212904.0763QIAOG F, LÜZ Y, ZHANGY, et al. Improvement of robot kinematic accuracy based on BAS-PSO algorithm[J]. Opt. Precision Eng., 2021, 29(4): 763-771.(in Chinese). doi: 10.37188/OPE.20212904.0763
[12] J S TOQUICA, J M S T MOTTA. A methodology for industrial robot calibration based on measurement sub-regions. The International Journal of Advanced Manufacturing Technology, 119, 1199-1216(2022).
[13] G Y LUO, L ZOU, Z L WANG et al. A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and Differential Evolution hybrid algorithm. Robotics and Computer-Integrated Manufacturing, 71, 102165(2021).
[14] L Y HE, Q C LI, X B ZHU et al. Kinematic calibration of a three degrees-of-freedom parallel manipulator with a laser tracker. Journal of Dynamic Systems, Measurement, and Control, 141, 1-10(2019).
[15] [15] 15曾远帆. 基于空间相似性的工业机器人定位精度补偿技术研究[D]. 南京: 南京航空航天大学, 2017.ZENGY F. Positional Error Compensation Technology for Industrial Robot Based on Spatial Similarity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
[16] W WANG, W TIAN, W H LIAO et al. Error compensation of industrial robot based on deep belief network and error similarity. Robotics and Computer-Integrated Manufacturing, 73, 102220(2022).
[17] D D CHEN, T M WANG, P J YUAN et al. A positional error compensation method for industrial robots combining error similarity and radial basis function neural network. Measurement Science and Technology, 30, 125010(2019).
[18] W WANG, W TIAN, W H LIAO et al. Pose accuracy compensation of mobile industry robot with binocular vision measurement and deep belief network. Optik, 238, 166716(2021).
[19] J XUE, Z R QIU, L FANG et al. Angular measurement of high precision reducer for industrial robot. IEEE Transactions on Instrumentation and Measurement, 70, 1-10(2021).
[20] [20] 20周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3): 42-48. doi: 10.3901/jme.2013.03.042ZHOUW, LIAOW H, TIANW. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3): 42-48.(in Chinese). doi: 10.3901/jme.2013.03.042
[21] [21] 21高贯斌, 张石文, 那靖, 等. 基于标定和关节空间插值的工业机器人轨迹误差补偿[J]. 机械工程学报, 2021, 57(21): 55-67. doi: 10.3901/jme.2021.21.055GAOG B, ZHANGS W, NAJ, et al. Compensation of trajectory error for industrial robots by interpolation and calibration method in the joint space[J]. Journal of Mechanical Engineering, 2021, 57(21): 55-67.(in Chinese). doi: 10.3901/jme.2021.21.055
[22] S M CAO, Q L CHENG, Y J GUO et al. Pose error compensation based on joint space division for 6-DOF robot manipulators. Precision Engineering, 74, 195-204(2022).
[23] [23] 23石章虎, 何晓煦, 曾德标, 等. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报, 2020, 41(11): 424105. doi: 10.7527/S1000-6893.2020.24105SHIZ H, HEX X, ZENGD B, et al. Error compensation method for mobile robot positioning based on error similarity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 424105.(in Chinese). doi: 10.7527/S1000-6893.2020.24105
[24] P F XIAO, H H JU, Q D LI et al. A new fixed axis-invariant based calibration approach to improve absolute positioning accuracy of manipulators. IEEE Access, 8, 134224-134232(2020).
[25] T Y CHEN, J S LIN, D Y WU et al. Research of calibration method for industrial robot based on error model of position. Applied Sciences, 11, 1287(2021).
[26] Y CHO, H M DO, J CHEONG. Screw based kinematic calibration method for robot manipulators with joint compliance using circular point analysis. Robotics and Computer-Integrated Manufacturing, 60, 63-76(2019).
[27] [27] 27赵京, 王鑫, 张自强, 等. 基于肘部自运动的主从异构7自由度机械臂运动映射及其几何逆解[J]. 机械工程学报, 2020, 56(15): 181-190. doi: 10.3901/jme.2020.15.181ZHAOJ, WANGX, ZHANGZ Q, et al. Master-slave 7-DOF manipulator motion mapping based on elbow self-motion and its analytical geometric inverse kinematics[J]. Journal of Mechanical Engineering, 2020, 56(15): 181-190.(in Chinese). doi: 10.3901/jme.2020.15.181
[28] [28] 28张栩曼, 张中哲, 王燕波, 等. 基于空间六自由度机械臂的逆运动学数值解法[J]. 导弹与航天运载技术, 2016(3): 81-84. doi: 10.7654/j.issn.1004-7182.20160319ZHANGX M, ZHANGZ Z, WANGY B, et al. Inverse kinematical numerical method based on 6-DOF space manipulator[J]. Missiles and Space Vehicles, 2016(3): 81-84.(in Chinese). doi: 10.7654/j.issn.1004-7182.20160319
[29] [29] 29张宏伟. 基于距离的工业机器人运动学标定及误差补偿[D]. 昆明: 昆明理工大学, 2019. doi: 10.22266/ijies2013.0331.03ZHANGH W. Research on Kinematics Calibration and Error Compensation of Industrial Robots Based on Distance[D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese). doi: 10.22266/ijies2013.0331.03
[30] Y F ZENG, W TIAN, W H LIAO. Positional error similarity analysis for error compensation of industrial robots. Robotics and Computer-Integrated Manufacturing, 42, 113-120(2016).
Get Citation
Copy Citation Text
Guanbin GAO, Jinpeng NIU, Fei LIU, Jing NA. Positioning error compensation of 6-DOF robots based on anisotropic error similarity[J]. Optics and Precision Engineering, 2022, 30(16): 1955
Category: Micro/Nano Technology and Fine Mechanics
Received: Apr. 5, 2022
Accepted: --
Published Online: Sep. 22, 2022
The Author Email: LIU Fei (feiliu2017@foxmail.com)