Acta Photonica Sinica, Volume. 50, Issue 4, 254(2021)
Hyperspectral Anomaly Detection Based on 3D Convolutional Autoencoder and Low Rank Representation
Fig. 6. The AUC value of two datasets under different eps and MinSample when
Fig. 7. The AUC value of two datasets under different eps and MinSample when
Fig. 8. The AUC value of two datasets under different eps and MinSample when
Fig. 9. The AUC value of two datasets under different eps and MinSample when
Fig. 10. The AUC value of two datasets under different eps and MinSample when
Fig. 11. The AUC value of two datasets under different
Fig. 12. Detection results of various detection algorithms in AVIRIS-1 dataset
Fig. 13. Detection results of various detection algorithms in AVIRIS-2 dataset
|
|
|
Get Citation
Copy Citation Text
Bangyong SUN, Zhe ZHAO, Bingliang HU, Tao YU. Hyperspectral Anomaly Detection Based on 3D Convolutional Autoencoder and Low Rank Representation[J]. Acta Photonica Sinica, 2021, 50(4): 254
Category: Image Processing
Received: Dec. 16, 2020
Accepted: Jan. 4, 2021
Published Online: May. 11, 2021
The Author Email: YU Tao (yutao@opt.ac.cn)