Journal of the Chinese Ceramic Society, Volume. 52, Issue 2, 579(2024)

Molecular Dynamics Simulation of Nucleation and Growth of Calcium Carbonate in Confined Space

WANG Pan1... LU Xinghai1, WANG Muhan1, ZHANG Yue1, XU Hongjian2 and HOU Dongshuai1,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(46)

    [1] [1] SOUSA V, BOGAS J A, REAL S, et al. Industrial production of recycled cement: Energy consumption and carbon dioxide emission estimation[J]. Environ Sci Pollut Res, 2023, 30(4): 8778-8789.

    [2] [2] MAKUL N. Advanced smart concrete - A review of current progress, benefits and challenges[J]. J Clean Prod, 2020, 274: 122899.

    [3] [3] NIE S, ZHOU J, YANG F, et al. Analysis of theoretical carbon dioxide emissions from cement production: methodology and application[J]. J Clean Prod, 2022, 334: 130270.

    [4] [4] LIU J H, WANG Y, LI Y Q, et al. Carbonated concrete brick capturing carbon dioxide from cement kiln exhaust gas[J]. Case Stud Constr Mater, 2022, 17: e01474.

    [5] [5] BARCELO L, KLINE J, WALENTA G, et al. Cement and carbon emissions[J]. Mater Struct, 2014, 47(6): 1055-1065.

    [6] [6] WU M, ZHANG Y S, JI Y S, et al. Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures[J]. J Clean Prod, 2018, 196: 358-369.

    [7] [7] MADDALENA R, ROBERTS J J, HAMILTON A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements[J]. J Clean Prod, 2018, 186: 933-942.

    [8] [8] YONG L, YU R, SHUI Z H, et al. Development of an environmental Ultra-High Performance Concrete (UHPC) incorporating carbonated recycled coarse aggregate[J]. Constr Build Mater, 2023, 362: 129657.

    [9] [9] LIU J, ZHANG W Z, JIN H S, et al. Exploring the carbon capture and sequestration performance of biochar-artificial aggregate using a new method[J]. Scie Total Environ, 2023, 859: 160423.

    [10] [10] GALAN I, ANDRADE C, MORA P, et al. Sequestration of CO2 by concrete carbonation[J]. Environ Sci Technol, 2010, 44(8): 3181-3186.

    [11] [11] VOGLER N, DRABETZKI P, LINDEMANN M, et al. Description of the concrete carbonation process with adjusted depth-resolved thermogravimetric analysis[J]. J Therm Anal Calorim, 2022, 147(11): 6167-6180.

    [12] [12] BORGES P H R, COSTA J O, MILESTONE N B, et al. Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS[J]. Cem Concr Res, 2010, 40(2): 284-292.

    [13] [13] MORANDEAU A, THIéRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J]. Cem Concr Res, 2014, 56: 153-170.

    [14] [14] CHANG J, FANG Y F. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate (C-S-H) by QXRD and TG/MS[J]. J Therm Anal Calorim, 2015, 119(1): 57-62.

    [15] [15] WANG D, FANG Y F, ZHANG Y Y, et al. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S[J]. J CO2 Util, 2019, 34: 149-162.

    [16] [16] MARTíNEZ-RAMíREZ S, FERNáNDEZ-CARRASCO L. Carbonation of ternary cement systems[J]. Constr Build Mater, 2012, 27(1): 313-318.

    [17] [17] LANGE L C, HILLS C D, POOLE A B. Preliminary investigation into the effects of carbonation on cement-solidified hazardous wastes[J]. Environ Sci Technol, 1996, 30(1): 25-30.

    [18] [18] CHANG J, LI Y, CAO M L, et al. Influence of magnesium hydroxide content and fineness on the carbonation of calcium hydroxide[J]. Constr Build Mater, 2014, 55: 82-88.

    [19] [19] SULAPHA P, WONG S F, WEE T H, et al. Carbonation of concrete containing mineral admixtures[J]. J Mater Civ Eng, 2003, 15(2): 134-143.

    [20] [20] ZHAN B J, POON C S, LIU Q, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Constr Build Mater, 2014, 67: 3-7.

    [21] [21] FANG Y F, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J]. Constr Build Mater, 2015, 76: 360-365.

    [22] [22] FENG H T, LI X, XING Y H, et al. Adsorption of CO32-/HCO3- on a quartz surface: Cluster formation, pH effects, and mechanistic aspects[J]. Phys Chem Chem Phys, 2023, 25(11): 7951-7964.

    [23] [23] YIN B, XU T Y, HOU D S, et al. Superhydrophobic anticorrosive coating for concrete through in situ bionic induction and gradient mineralization[J]. Constr Build Mater, 2020, 257: 119510.

    [24] [24] DEMICHELIS R, RAITERI P, GALE J D, et al. Stable prenucleation mineral clusters are liquid-like ionic polymers[J]. Nat Commun, 2011, 2(1): 1-8.

    [25] [25] HOU D S, MA H Y, YU Z, et al. Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties[J]. Acta Mater, 2014, 67: 81-94.

    [26] [26] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proc Natl Acad Sci USA, 2009, 106(38): 16102-16107.

    [27] [27] QIN L, MAO X T, CUI Y F, et al. New insights into the early stage nucleation of calcium carbonate gels by reactive molecular dynamics simulations[J]. J Chem Phys, 2022, 157(23): 9.

    [28] [28] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phys Chem B, 2004, 108(4): 1255-1266.

    [29] [29] HOU D S, YANG Q R, WANG P, et al. Unraveling disadhesion mechanism of epoxy/CSH interface under aggressive conditions[J]. Cem Concr Res, 2021, 146: 106489.

    [30] [30] HOU D S, JIA Y T, YU J, et al. Transport properties of sulfate and chloride ions confined between calcium silicate hydrate surfaces: A molecular dynamics study[J]. J Phys Chem C, 2018, 122(49): 28021-28032.

    [31] [31] RAITERI P, DEMICHELIS R, GALE J D. Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation[J]. J Phys Chem C, 2015, 119(43): 24447-24458.

    [32] [32] HEBERLING F, KLA?I? T, RAITERI P, et al. Structure and surface complexation at the calcite (104)-water interface[J]. Environ Sci Technol, 2021, 55(18): 12403-12413.

    [33] [33] SCHUITEMAKER A, AUFORT J, KOZIARA K B, et al. Simulating the binding of key organic functional groups to aqueous calcium carbonate species[J]. Phys Chem Chem Phys, 2021, 23(48): 27253-27265.

    [34] [34] REISCHL B, RAITERI P, GALE J D, et al. Atomistic simulation of atomic force microscopy imaging of hydration layers on calcite, dolomite, and magnesite surfaces[J]. J Phys Chem C, 2019, 123(24): 14985-14992.

    [35] [35] HOSSEINI E, ZAKERTABRIZI M, HABIBNEJAD KORAYEM A, et al. Orbital overlapping through induction bonding overcomes the intrinsic delamination of 3D-printed cementitious binders[J]. ACS Nano, 2020, 14(8): 9466-9477.

    [36] [36] DI TOMMASO D, DE LEEUW N H. The onset of calcium carbonate nucleation: A density functional theory molecular dynamics and hybrid microsolvation/continuum study[J]. J Phys Chem B, 2008, 112(23): 6965-6975.

    [37] [37] AVARO J, MOON E M, ROSE J, et al. Calcium coordination environment in precursor species to calcium carbonate mineral formation[J]. Geochim Cosmochim Acta, 2019, 259: 344-357.

    [38] [38] LOPEZ-BERGANZA J A, DIAO Y J, PAMIDIGHANTAM S, et al. Ab initio studies of calcium carbonate hydration[J]. J Phys Chem A, 2015, 119(47): 11591-11600.

    [39] [39] KELLERMEIER M, PICKER A, KEMPTER A, et al. A straightforward treatment of activity in aqueous CaCO3 solutions and the consequences for nucleation theory[J]. Adv Mater, 2014, 26(5): 752-757.

    [40] [40] WANG B B, XIAO Y, XU Z M. Variation in properties of pre-nucleation calcium carbonate clusters induced by aggregation: A molecular dynamics study[J]. Crystals, 2021, 11(2): 102.

    [41] [41] GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chem Soc Rev, 2014, 43(7): 2348-2371.

    [42] [42] SHEN X Y, et al. New insights into the non-classical nucleation of C-S-H[J]. Cem Concr Res, 2023, 168: 12.

    [43] [43] HOU D S, LI T, HAN Q H, et al. Insight on the sodium and chloride ions adsorption mechanism on the ettringite crystal: Structure, dynamics and interfacial interaction[J]. Comput Mater Sci, 2018, 153: 479-492.

    [44] [44] QIAO G, HOU D S, WANG P, et al. Insights on failure modes of calcium-silicate-hydrate interface strengthened by polyacrylamides: Structure, dynamic and mechanical properties[J]. Constr Build Mater, 2021, 278: 122406.

    [45] [45] WANG P, YANG Q R, WANG M H, et al. Theoretical investigation of epoxy detachment from C-S-H interface under aggressive environment[J]. Constr Build Mater, 2020, 264: 120232.

    [46] [46] SUN M, GENG G Q, XIN D B, et al. Molecular quantification of the decelerated dissolution of tri-calcium silicate (C3S) due to surface adsorption[J]. Cem Concr Res, 2022, 152: 106682.

    Tools

    Get Citation

    Copy Citation Text

    WANG Pan, LU Xinghai, WANG Muhan, ZHANG Yue, XU Hongjian, HOU Dongshuai. Molecular Dynamics Simulation of Nucleation and Growth of Calcium Carbonate in Confined Space[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 579

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 6, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Dongshuai HOU (dshou@outlook.com)

    DOI:

    CSTR:32186.14.

    Topics