Infrared and Laser Engineering, Volume. 53, Issue 10, 20240215(2024)

BYOL-based self-supervised learning for hyperspectral image classification

Xizhen HAN1,2, Zhengang JIANG1, Yuanyuan LIU3, Jian ZHAO4, Qiang SUN3, and Jianzhuo LIU3
Author Affiliations
  • 1Changchun University of Science and Technology, Changchun 130000, China
  • 2Suzhou East Clotho Opto-Electronic Technology Co. Ltd. Zhangjiagang 215600, China
  • 3Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 4Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215000, China
  • show less
    Figures & Tables(17)
    BYOL architecture
    The flow chart of BSSL method proposed in this paper
    SSTN algorithm architecture. (a) Φ search space; (b) Θ search space; (c) “AEAE” block sequence
    Directional region generation in vertical direction. (a) Area scanned from top to bottom; (b) Area scanned from bottom to top; (c) Merged area in two directions; (d) Scanning performance example
    Superpixel clustering result map of Indian Pines dataset. (a) Original image; (b) Edge image; (c) Superpixel clustering image
    Indian Pines dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    University of Pavia dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    Salinas dataset. (a) Pseudo-color image; (b) Corresponding ground object type; (c) Number of sample sets
    Classification maps of different methods on Indian Pines dataset
    Classification maps of different methods on University of Pavia dataset
    Classification maps of different methods on Salinas dataset
    The impact of different ratios of pretraining samples on overall accuracy (OA)
    The effect of different number of superpixel blocks on OA on the Indian Pines dataset
    • Table 1. Classification results of different methods on Indian Pines dataset

      View table
      View in Article

      Table 1. Classification results of different methods on Indian Pines dataset

      ClassSuperPCAS3PCAContrastNetSSCLN2SSLBSSL
      193.18±0.38100.00±0.0082.54±3.1685.17±2.4692.56±1.3293.09±0.69
      289.66±2.6585.94±3.1681.45±2.6093.75±1.5794.34±4.4789.36±2.44
      390.75±2.2392.65±5.6489.45±2.3190.38±1.6687.52±7.4594.27±0.83
      497.20±2.0695.41±2.3084.34±2.1588.84±2.4494.28±6.2581.66±2.30
      596.03±2.4891.22±2.4582.97±1.4587.91±1.7898.16±2.4391.77±0.95
      694.13±4.4593.19±3.2293.56±1.5692.09±1.3898.75±1.2698.09±0.65
      792.34±3.3691.00±1.8392.67±1.4391.83±1.4996.38±2.6198.22±0.65
      898.24±2.6295.65±3.5596.54±0.8597.89±0.45100.00±0.0098.93±0.41
      991.03±4.4396.20±3.1099.65±0.9396.94±0.6465.25±1.8397.89±0.97
      1089.15±4.3591.10±4.5087.54±2.6885.97±1.5589.93±8.4094.87±0.85
      1194.78±1.4496.68±1.0287.30±2.3292.85±2.1094.53±2.7597.52±0.78
      1293.53±1.5795.01±1.5493.79±1.4696.09±0.8996.28±0.9397.96±1.30
      1398.02±1.7299.43±0.0598.56±0.9195.97±0.9199.57±2.1597.06±0.80
      1499.86±0.0399.86±0.0396.65±0.4798.98±0.4799.07±0.4898.08±0.47
      1598.37±0.2897.31±1.8685.56±2.5395.12±1.2096.46±5.3697.29±0.89
      1697.60±1.4598.41±1.0092.57±1.4696.96±1.1799.18±1.1495.54±0.89
      OA(94.53±0.68)%(94.80±1.22)%(90.17±0.98)%(92.73±1.07)%(94.58±1.96)%(95.85±0.69)%
      AA(94.62±0.74)%(94.94±0.64)%(90.32±1.17)%(92.92±0.88)%(93.89±2.25)%(95.10±0.63)%
      Kappa×10093.73±0.7894.96±0.7489.36±1.2193.12±0.8394.27±1.6795.02±0.76
      recall94.66±0.3294.52±0.8390.85±0.3793.41±1.5894.78±2.7495.75±1.54
      f1-score94.65±0.7494.02±0.5590.38±0.8992.45±1.3595.38±1.8595.67±2.85
    • Table 2. Classification results of different methods on University of Pavia dataset

      View table
      View in Article

      Table 2. Classification results of different methods on University of Pavia dataset

      ClassSuperPCAS3PCAContrastNetSSCLN2SSLBSSL
      179.65±3.1489.53±4.1094.72±1.4493.04±1.6095.24±1.7497.32±0.89
      294.09±1.9793.72±2.8295.13±1.5795.85±1.3697.61±1.1998.74±0.47
      397.54±0.3499.66±0.1089.05±3.5593.66±2.3595.67±2.4792.08±1.28
      486.60±2.3391.73±2.3191.56±1.5692.08±2.0997.71±0.8992.23±1.14
      596.43±2.0899.60±0.2694.78±1.4498.37±0.9599.08±0.4699.55±0.09
      694.04±2.1798.88±0.7396.58±0.8995.53±1.6096.83±1.3397.21±0.35
      794.01±1.8798.39±0.8696.49±0.8497.59±0.7395.28±2.2395.16±0.71
      892.08±3.1697.36±0.9195.97±1.0093.60±1.1092.96±3.9198.34±0.43
      998.69±1.6293.76±3.6093.27±1.8895.81±1.4794.63±2.3395.02±1.08
      OA(91.47±0.65)%(96.09±1.28)%(95.39±1.17)%(95.62±0.90)%(95.29±2.45)%(95.93±0.61)%
      AA(92.57±0.45)%(95.85±0.81)%(94.17±1.33)%(95.06±0.67)%(96.11±1.84)%(96.18±0.63)%
      Kappa×10088.80±0.8294.86±1.6695.7±1.4595.41±0.6495.34±2.3195.91±0.47
      recall92.08±1.2595.49±1.2894.56±1.2895.27±0.5895.36±0.6795.68±0.81
      f1-score91.20±0.8496.26±0.5694.82±1.9295.34±0.7295.44±1.6495.82±1.26
    • Table 3. Classification results of different methods on Salinas dataset

      View table
      View in Article

      Table 3. Classification results of different methods on Salinas dataset

      ClassSuperPCAS3PCAContrastNetSSCLN2SSLBSSL
      1100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00
      299.82±0.1199.84±0.1499.21±0.5898.18±0.5099.57±0.8598.68±0.29
      396.94±2.6697.44±1.5997.46±0.93100.00±0.0097.41±0.42100.00±0.00
      498.97±0.3698.91±0.4998.25±0.8598.48±0.5598.64±0.6799.64±0.19
      599.46±0.0498.99±0.2098.45±0.5598.95±0.9099.48±0.5197.74±0.93
      699.59±0.0799.90±0.0199.34±0.07100.00±0.00100.00±0.00100.00±0.00
      798.95±1.2098.82±1.2296.54±0.2598.58±0.73100.00±0.0099.05±0.43
      899.36±0.1899.88±0.2397.98±1.0596.35±1.3595.59±2.4199.79±0.16
      999.66±0.2799.09±1.4998.15±1.16100.00±0.00100.00±0.0098.86±0.83
      1097.28±0.9895.81±2.6694.12±1.6696.08±0.7599.34±0.8499.02±0.31
      1198.17±1.3098.54±1.2093.79±1.6896.07±0.5394.84±1.6599.39±0.45
      1299.79±0.2299.95±0.1098.38±1.4698.23±0.5299.56±0.2899.95±0.28
      1398.19±0.0098.19±0.0096.87±1.5495.33±0.8798.84±0.64100.00±0.00
      1497.65±1.0098.04±0.9195.88±1.4797.59±0.8199.57±0.48100.00±0.00
      1599.43±0.3699.56±0.3699.65±0.08100.00±0.0092.86±0.8599.97±0.00
      1699.23±0.6598.92±0.5297.11±1.46100.00±0.0099.28±0.34100.00±0.00
      OA(99.19±0.16)%(99.16±0.49)%(97.61±0.78)%(98.57±0.68)%(98.97±0.71)%(99.52±0.27)%
      AA(98.91±0.27)%(98.87±0.49)%(97.57±0.52)%(98.37±0.43)%(98.44±0.83)%(99.51±0.23)%
      Kappa×10099.09±0.1799.06±0.5597.13±0.4698.06±0.3397.84±0.5899.44±0.12
      recall99.37±0.8299.14±0.3697.28±0.6898.37±1.0798.37±0.6399.27±0.34
      f1-score98.85±0.6798.68±0.7797.61±1.8598.75±0.6797.86±1.2299.16±0.85
    • Table 4. Ablation trial results on three datasets

      View table
      View in Article

      Table 4. Ablation trial results on three datasets

      DatasetsEvaluation indicatorsBSSL-noSPBSSL
      Indian PinesOA(92.13±0.28)%(95.85±0.69)%
      AA(91.42±0.83)%(95.10±0.63)%
      Kappa91.97±0.6695.02±0.76
      University of PaviaOA(92.71±0.38)%(95.93±0.61)%
      AA(92.39±0.74)%(96.18±0.63)%
      Kappa92.06±0.8695.91±0.47
      SalinasOA(94.79±0.56)%(99.52±0.27)%
      AA(94.48±0.73)%(99.51±0.23)%
      Kappa94.27±0.2299.44±0.12
    Tools

    Get Citation

    Copy Citation Text

    Xizhen HAN, Zhengang JIANG, Yuanyuan LIU, Jian ZHAO, Qiang SUN, Jianzhuo LIU. BYOL-based self-supervised learning for hyperspectral image classification[J]. Infrared and Laser Engineering, 2024, 53(10): 20240215

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 光谱学

    Received: Jun. 10, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email:

    DOI:10.3788/IRLA20240215

    Topics