Electro-Optic Technology Application, Volume. 36, Issue 3, 1(2021)
Influence of Target Shape and Plasma Properties on Laser-driven Ion Acceleration
[7] [7] Guo T, Spielmann C, Walker B, et al. Generation of hard X rays by ultrafast terawatt lasers[J]. Review of Scientific Instruments, 2001, 72: 41-47.
[8] [8] Henderson A, Liang E, Riley N, et al. Ultra-intense Gamma-rays created using the Texas petawatt laser[J]. High Energy Density Physics, 2014, 12.
[9] [9] Santos J J, Amiranoff F, Baton S D, et al. Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics[J]. Physical Review Letters, 2002, 89(2): 4.
[10] [10] d′Humieres E, Lefebvre E, Gremillet L, et al. Proton acceleration mechanisms in high-intensity laser interaction with thin foils[J]. Physics of Plasmas, 2005, 12(6): 13.
[11] [11] Hatchett S, Brown C, Cowan T, et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets[J]. Physics of Plasmas, 2000, 7: 2076-2082.
[12] [12] Pomerantz I, McCary E, Meadows A, et al. Ultrashort pulsed neutron source[J]. Physical Review Letters, 2014, 113: 184801.
[13] [13] Pakhomov A. Neutrino generation by high-intensity lasers[J]. Journal of Physics G: Nuclear and Particle Physics, 2002, 28: 1469.
[14] [14] Daido H, Nishiuchi M, Pirozhkov A. Review of laser-driven ion sources and their applications[J]. Reports on progress in physics, Physical Society (Great Britain), 2012, 75: 056401.
[15] [15] Li C K, Seguin F H, Frenje J A, et al. Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas[J]. Physics of Plasmas, 2009, 16(5): 056304.
[16] [16] Reed M, Brunson R. Proton cancer therapy center: an entrepreneur's dilemma[J]. Entrepreneurship Theory and Practice, 2011, 35(5): 1091-1102.
[17] [17] Mora P. Plasma expansion into a vacuum[J]. Physical review letters, 2003, 90: 185002.
[18] [18] Schwoerer H, Pfotenhauer S, Jackel O, et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448.
[19] [19] Nodera Y, Kawata S, Onuma N, et al. Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction[J]. Physical Review E, 2008, 78(4): 6.
[20] [20] Liu M P, Wu C, Xie B S, et al. Energetic collimated ion bunch generation from an ultraintense laser interacting with thin concave targets[J]. Physics of Plasmas, 2008, 15(6).
[21] [21] Pegoraro F, Bulanov S. Photon bubbles and Ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse[J]. Physical review letters, 2007, 99: 065002.
[22] [22] Psikal J, Tikhonchuk V T, Limpouch J, et al. Ion acceleration by femtosecond laser pulses in small multispecies targets[J]. Physics of Plasmas, 2008, 15(5): 8.
[23] [23] Flippo K, D'Humières E, Gaillard S, et al. Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets[J]. Physics of Plasmas, 2008, 15: 056709-1.
[24] [24] Zheng J, Mima K, Sheng Z M, et al. Phase space modulation of laser produced protons with a double-foil target generation of quasimonoenergetic proton beams[J]. Physics of Plasmas, 2008, 15(5): 5.
[25] [25] Lee K, Park S H, Cha Y H, et al. Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse[J]. Physical Review E, 2008, 78(5).
[26] [26] Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions[J]. Physics of Plasmas, 2001, 8(2): 542-549.
[29] [29] Yogo A, Daido H, Bulanov S V, et al. Laser ion acceleration by a near-critical density target[C]//1st International Symposium on Laser-Driven Relativistic Plasmas Applied for Science, Industry, and Medicine, Sep 17-20. Kyoto, JAPAN. AIP Conference Proceedings: 157-162.
[30] [30] Flacco A, Guemnie-Tafo A, Nuter R, et al. Characterization of a controlled plasma expansion in vacuum for laser driven ion acceleration[J]. Journal of Applied Physics, 2008, 104 (10): 103304.
[31] [31] Nuter R, Gremillet L, Combis P, et al. Influence of a preplasma on electron heating and proton acceleration in ultraintense laser-foil interaction[J]. Journal of Applied Physics, 2008, 104 (10): 103307.
[32] [32] Chen M, Sheng Z-M, Dong Q-L, et al. Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas[J]. Physics of Plasmas, 2007, 14: 053102-053102.
[33] [33] Wilks S, Kruer W L. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas[J]. IEEE Journal of Quantum Electronics, 1997, 33: 1954-1968.
[34] [34] Andreev A, Levy A, Ceccotti T, et al. Fast-Ion energy-flux enhancement from ultrathin foils irradiated by intense and high-contrast short laser pulses[J]. Physical Review Letters, 2008, 101(15): 155002.
[35] [35] Kwon D H, Rhee Y J, Lee S, et al. Effect of plasma profile on ion acceleration in the interaction of a short laser pulse with a thin overdense target[J]. Physics of Plasmas, 2008, 15(6): 064503.
[36] [36] Ter-Avetisyan S, Schnurer M, Sokollik T, et al. Proton acceleration in the electrostatic sheaths of hot electrons governed by strongly relativistic laser-absorption processes[J]. Physical Review E, 2008, 77(1): 016403.
[37] [37] Nakamura T, Mima K, Ter-Avetisyan S, et al. Lateral movement of a laser-accelerated proton source on the target′s rear surface[J]. Physical Review E, 2008, 77(3): 036407.
Get Citation
Copy Citation Text
DU Fei, LI Ying-de, LI Sen-sen, WANG Chun-yan, YANG Yang, FAN Xin-min. Influence of Target Shape and Plasma Properties on Laser-driven Ion Acceleration[J]. Electro-Optic Technology Application, 2021, 36(3): 1
Category:
Received: Apr. 13, 2021
Accepted: --
Published Online: Sep. 18, 2021
The Author Email:
CSTR:32186.14.