Infrared and Laser Engineering, Volume. 52, Issue 3, 20220505(2023)

Fiber Bragg grating temperature insensitive filter based on bimetal structure

Jingjing Liao1,2, Lianqing Zhu2,3, Yanming Song1,3, Jingtao Xin1,2, and Zheng Lv3
Author Affiliations
  • 1Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China
  • 2Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China
  • 3Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
  • show less
    Figures & Tables(12)
    Schematic diagram of bimetal structure
    Temperature sensitivity coefficient versus L1/L2
    Spectrum of ultra-short fiber grating
    (a) Schematic diagram and (b) physical drawing of temperature insensitive filter
    Experimental setup
    Fitting curve of the center wavelength of the tested fiber grating filter with temperature
    • Table 1. Thermal expansion coefficient of common materials

      View table
      View in Article

      Table 1. Thermal expansion coefficient of common materials

      MaterialAluminumBrassIronInvarQuartzGlass
      Coefficient of thermal expansion/℃23.9×10−619.00×10−612.20×10−61.00×10−60.55×10−64.00×10−6
    • Table 2. Variation range of L1/L2 with different combinations of metal materials

      View table
      View in Article

      Table 2. Variation range of L1/L2 with different combinations of metal materials

      Bimetallic materialRelationship between L1/L2 and temperature sensitivity coefficient When ∆Y=0.1 pm/℃, the change of x/mm
      Brass/AluminumY= –5.85913x+45.50557 ±0.01707
      Iron/BrassY= –8.13103x+41.91835 ±0.01229
      Iron/AluminumY= –13.99016x+53.6366 ±0.00715
      Invar/AluminumY= –27.38245x+67.02889 ±0.00366
      Invar/BrassY= –21.52332x+55.31064 ±0.00465
      Invar/IronY= –13.39229x+39.04858 ±0.00747
    • Table 3. Value range of quantitative corresponding variables

      View table
      View in Article

      Table 3. Value range of quantitative corresponding variables

      Ration/mmThe range of variables/mm
      L1=70 L2=9.013±0.0197
      L2=8 L1=62.128±0.136
    • Table 4. Relationship between L1/L2 and sensitivity coefficient

      View table
      View in Article

      Table 4. Relationship between L1/L2 and sensitivity coefficient

      L1/L2The length of L1/mm Temperature sensitivity coefficient/pm·℃−1
      7.78062.240–0.07846
      7.77562.200–0.04916
      7.76662.1280.00005
      7.75062.0000.09731
    • Table 5. Filter size parameters

      View table
      View in Article

      Table 5. Filter size parameters

      ParameterParameter nameNumerical value
      L1/mm Length between fixed points on the base69, 67.1, 65.35, 62.25
      L2/mm Filter fiber grating length8
      $ {\alpha }_{1} $/℃−1Coefficient of thermal expansion of brass substrate19×10−6
      $ {\alpha }_{2} $/℃−1Strain transfer beam aluminum thermal expansion coefficient23.9×10−6
    • Table 6. Temperature sensitivity coefficient corresponding to different L1/L2

      View table
      View in Article

      Table 6. Temperature sensitivity coefficient corresponding to different L1/L2

      L1/L2The length of L1/mm Temperature sensitivity coefficient/pm·℃−1
      8.6369−2.23
      8.3967.10.15
      8.1765.351.41
      7.7862.252.4
    Tools

    Get Citation

    Copy Citation Text

    Jingjing Liao, Lianqing Zhu, Yanming Song, Jingtao Xin, Zheng Lv. Fiber Bragg grating temperature insensitive filter based on bimetal structure[J]. Infrared and Laser Engineering, 2023, 52(3): 20220505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical communication and sensing

    Received: Jul. 21, 2022

    Accepted: --

    Published Online: Apr. 12, 2023

    The Author Email:

    DOI:10.3788/IRLA20220505

    Topics