Infrared and Laser Engineering, Volume. 52, Issue 3, 20220505(2023)

Fiber Bragg grating temperature insensitive filter based on bimetal structure

Jingjing Liao1...2, Lianqing Zhu2,3, Yanming Song1,3, Jingtao Xin1,2 and Zheng Lv3 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China
  • 2Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China
  • 3Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
  • show less
    Figures & Tables(12)
    Schematic diagram of bimetal structure
    Temperature sensitivity coefficient versus L1/L2
    Spectrum of ultra-short fiber grating
    (a) Schematic diagram and (b) physical drawing of temperature insensitive filter
    Experimental setup
    Fitting curve of the center wavelength of the tested fiber grating filter with temperature
    • Table 1. Thermal expansion coefficient of common materials

      View table
      View in Article

      Table 1. Thermal expansion coefficient of common materials

      MaterialAluminumBrassIronInvarQuartzGlass
      Coefficient of thermal expansion/℃23.9×10−619.00×10−612.20×10−61.00×10−60.55×10−64.00×10−6
    • Table 2. Variation range of L1/L2 with different combinations of metal materials

      View table
      View in Article

      Table 2. Variation range of L1/L2 with different combinations of metal materials

      Bimetallic materialRelationship between L1/L2 and temperature sensitivity coefficient When ∆Y=0.1 pm/℃, the change of x/mm
      Brass/AluminumY= –5.85913x+45.50557 ±0.01707
      Iron/BrassY= –8.13103x+41.91835 ±0.01229
      Iron/AluminumY= –13.99016x+53.6366 ±0.00715
      Invar/AluminumY= –27.38245x+67.02889 ±0.00366
      Invar/BrassY= –21.52332x+55.31064 ±0.00465
      Invar/IronY= –13.39229x+39.04858 ±0.00747
    • Table 3. Value range of quantitative corresponding variables

      View table
      View in Article

      Table 3. Value range of quantitative corresponding variables

      Ration/mmThe range of variables/mm
      L1=70 L2=9.013±0.0197
      L2=8 L1=62.128±0.136
    • Table 4. Relationship between L1/L2 and sensitivity coefficient

      View table
      View in Article

      Table 4. Relationship between L1/L2 and sensitivity coefficient

      L1/L2The length of L1/mm Temperature sensitivity coefficient/pm·℃−1
      7.78062.240–0.07846
      7.77562.200–0.04916
      7.76662.1280.00005
      7.75062.0000.09731
    • Table 5. Filter size parameters

      View table
      View in Article

      Table 5. Filter size parameters

      ParameterParameter nameNumerical value
      L1/mm Length between fixed points on the base69, 67.1, 65.35, 62.25
      L2/mm Filter fiber grating length8
      $ {\alpha }_{1} $/℃−1Coefficient of thermal expansion of brass substrate19×10−6
      $ {\alpha }_{2} $/℃−1Strain transfer beam aluminum thermal expansion coefficient23.9×10−6
    • Table 6. Temperature sensitivity coefficient corresponding to different L1/L2

      View table
      View in Article

      Table 6. Temperature sensitivity coefficient corresponding to different L1/L2

      L1/L2The length of L1/mm Temperature sensitivity coefficient/pm·℃−1
      8.6369−2.23
      8.3967.10.15
      8.1765.351.41
      7.7862.252.4
    Tools

    Get Citation

    Copy Citation Text

    Jingjing Liao, Lianqing Zhu, Yanming Song, Jingtao Xin, Zheng Lv. Fiber Bragg grating temperature insensitive filter based on bimetal structure[J]. Infrared and Laser Engineering, 2023, 52(3): 20220505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical communication and sensing

    Received: Jul. 21, 2022

    Accepted: --

    Published Online: Apr. 12, 2023

    The Author Email:

    DOI:10.3788/IRLA20220505

    Topics