Optics and Precision Engineering, Volume. 32, Issue 7, 987(2024)

Liquid metal based metasurface for cross-band and ultra-wideband polarization conversion

Yanan SHAO1,2, Bowen LI1, Shibo GAO1,2, and Yongbo DENG1、*
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun30033, China
  • 2University of Chinese Academy of Sciences, Beijing100039, China
  • show less
    References(27)

    [1] YANG W, WANG T C, MAO J Q. Adaptive edge finite element method and numerical design for metasurface cloak[J]. Computer Physics Communications, 292, 108858(2023).

    [2] LIAO J M, JI C, YUAN L M et al. Polarization-insensitive metasurface cloak for dynamic illusions with an electromagnetic transparent window[J]. ACS Applied Materials & Interfaces, 15, 16953-16962(2023).

    [3] XING W T, SI L M, DONG L et al. Rapid design of hybrid mechanism metasurface with random coding for terahertz dual-band RCS reduction[J]. Optics Express, 31, 28444-28458(2023).

    [4] FARZIN P, SOLEIMANI M. Graphene-based metasurface for real-time control of three electromagnetic wave modes and polarization state[J]. Diamond and Related Materials, 139, 110279(2023).

    [5] XU H X, WANG Y Z, WANG C H et al. Deterministic approach to achieve full-polarization cloak[J]. Research, 2021, 6382172(2021).

    [6] BAI J, YAO Y. Highly efficient anisotropic chiral plasmonic metamaterials for polarization conversion and detection[J]. ACS Nano, 15, 14263-14274(2021).

    [7] WU G B, DAI J Y, CHENG Q et al. Sideband-free space-time-coding metasurface antennas[J]. Nature Electronics, 5, 808-819(2022).

    [8] JIA X L, KAPRAUN J, WANG J X et al. Metasurface reflector enables room-temperature circularly polarized emission from VCSEL[J]. Optica, 10, 1093(2023).

    [9] [9] 王进东, 叶文成, 张伟婷, 等. 超构表面红外分光阵列设计[J]. 光学 精密工程, 2021, 29(4): 674-681. doi: 10.37188/OPE.20212904.0674WANGJ D, YEW CH, ZHANGW T, et al. Design of infrared metasurface splitter arrays[J]. Opt. Precision Eng., 2021, 29(4): 674-681.(in Chinese). doi: 10.37188/OPE.20212904.0674

    [10] LI N, ZHENG S L, YANG H et al. A broadband dual-polarized reflective metasurface for THz OAM communication[J]. IEEE Transactions on Microwave Theory and Techniques, 72, 1302-1311(2024).

    [11] WANG J W, HUANG Z A, WAN X et al. Polarization and direction-of-arrival estimations based on orthogonally polarized digital programmable metasurfaces[J]. Journal of Physics D Applied Physics, 56, 465001(2023).

    [12] LI Z, WAN C W, DAI C J et al. Actively switchable beam-steering via hydrophilic/hydrophobic-selective design of water-immersed metasurface[J]. Advanced Optical Materials, 9, 2100297(2021).

    [13] HUANG X J, MA X, LI X W et al. Simultaneous realization of polarization conversion for reflected and transmitted waves with bi-functional metasurface[J]. Scientific Reports, 12, 2368(2022).

    [14] ZENG L, ZHANG H F, ZHANG D. A tunable metamaterial-based linear-to-circular polarization converter regulated solid state plasma in S-band[J]. Journal of Optics, 22, 125103(2020).

    [15] ZHAO Y J, YANG R C, WANG J Y et al. Dual-mode terahertz broadband polarization conversion metasurface with integrated graphene-VO2[J]. Optics Communications, 510, 127895(2022).

    [16] HU Q, CHEN K, ZHANG N et al. Arbitrary and dynamic poincaré sphere polarization converter with a time-varying metasurface[J]. Advanced Optical Materials, 10, 2101915(2022).

    [17] YU H C, CAO X Y, GAO J et al. Design of a wideband and reconfigurable polarization converter using a manipulable metasurface[J]. Optical Materials Express, 8, 3373(2018).

    [18] LIANG Y, DONG Y Y, JIN Y X et al. Terahertz vortex beams generated by the ring-arranged multilayer transmissive metasurfaces[J]. Infrared Physics and Technology, 127, 104441(2022).

    [19] LIN B Q, WU J L, DA X Y et al. A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface[J]. Applied Physics A, 123, 43(2016).

    [20] ZHENG Q, GUO C J, DING J. Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion[J]. IEEE Antennas and Wireless Propagation Letters, 17, 1459-1463(2018).

    [21] WANG H B, CHENG Y J, CHEN Z N. Wideband and wide-angle single-layered-substrate linear-to-circular polarization metasurface converter[J]. IEEE Transactions on Antennas and Propagation, 68, 1186-1191(2020).

    [22] JIA Y, LIU Y, ZHANG W et al. Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave[J]. Optical Materials Express, 8, 597-604(2018).

    [23] KHAN M I, KHALID Z, TAHIR F A. Linear and circular-polarization conversion in X-band using anisotropic metasurface[J]. Scientific Reports, 9, 4552(2019).

    [24] LIU Y, LIU Z S, WANG Q et al. Low-RCS antenna array with switchable scattering patterns employing microfluidic liquid metal alloy-based metasurface[J]. IEEE Transactions on Antennas and Propagation, 69, 8955-8960(2021).

    [25] LIM D, LIM S, LIM D, LIM S. Liquid-metal-fluidically switchable metasurface for broadband and polarization-insensitive absorption[J]. IEEE Access, 6, 40854-40859(2018).

    [26] WU P C, ZHU W M, SHEN Z X et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 5, 1600938(2017).

    [27] SANUSI O M, WANG Y, ROY L. Reconfigurable polarization converter using liquid metal based metasurface[J]. IEEE Transactions on Antennas and Propagation, 70, 2801-2810(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yanan SHAO, Bowen LI, Shibo GAO, Yongbo DENG. Liquid metal based metasurface for cross-band and ultra-wideband polarization conversion[J]. Optics and Precision Engineering, 2024, 32(7): 987

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 22, 2023

    Accepted: --

    Published Online: May. 28, 2024

    The Author Email: Yongbo DENG (dengyb@ciomp.ac.cn)

    DOI:10.37188/OPE.20243207.0987

    Topics