Acta Optica Sinica, Volume. 42, Issue 11, 1134007(2022)

Research Progress of Multi-Channel Kirkpatrick-Baez Microscope for X-Ray Diagnostics in Laser Inertial Confinement Fusion

Shengzhen Yi, Haoxuan Si, Qiushi Huang, Zhong Zhang, Li Jiang, Runze Qi, Zhe Zhang, and Zhanshan Wang*
Author Affiliations
  • Key Laboratory of Advanced Micro-Structured Materials, Ministry of Education, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    References(41)

    [1] Patel P K, Springer P T, Weber C R et al. Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility[J]. Physics of Plasmas, 27, 050901(2020).

    [2] Wang F, Jiang S E, Ding Y K et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 5, 035201(2020).

    [3] Batani D, Antonelli L, Barbato F et al. Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion[J]. Nuclear Fusion, 59, 032012(2019).

    [4] Xu J, Mu B Z, Chen L et al. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 32, 112001(2020).

    [5] Wolter H. Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen[J]. Annalen Der Physik, 445, 94-114(1952).

    [6] Voger J K, Pivovaroff M J, Kozioziemski B et al. 89(10): 10G113(2018).

    [7] Chon K S, Namba Y, Kim K W et al. Fabrication of a soft X-ray microscope mirror using an epoxy replication method[J]. Optical Engineering, 47, 013401(2008).

    [8] Desselberger M, Willi O, Savage M et al. Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams[J]. Physical Review Letters, 65, 2997-3000(1990).

    [9] Remington B A, Glendinning S G, Wallace R J et al. Wölter X-ray microscope characterization measurements on Nova[J]. Review of Scientific Instruments, 63, 5080-5082(1992).

    [10] Troussel P, Meyer B, Reverdin R et al. Wolter-like high resolution X-ray imaging microscope for Rayleigh Taylor instabilities studies[J]. Review of Scientific Instruments, 76, 063707(2005).

    [11] Nederbragt W[R]. High-accuracy X-ray imaging of meso-scale targets: final report Livermore: Office of Scientific and Technical Information, 2004.

    [12] Fein J R, Ampleford D J, Vogel J K et al. 89(10): 10G115(2018).

    [13] Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 38, 766-774(1948).

    [14] Marshall F J, DeHaas T. 81(10): 10E503[J]. Glebov V Y. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments. Review of Scientific Instruments(2010).

    [15] Zhao L L, Sun D L, Wang L L et al. Ray-tracing program for grazing incident X-ray microscope system[J]. Chinese Journal of Lasers, 47, 0401002(2020).

    [16] Marshall F J. McKenty P W, Delettrez J A, et al. Plasma-density determination from X-ray radiography of laser-driven spherical implosions[J]. Physical Review Letters, 102, 185004(2009).

    [17] Seward F, Dent J, Boyle M et al. Calibrated “four-color” X-ray microscope for laser plasma diagnostics[J]. Review of Scientific Instruments, 47, 464-470(1976).

    [18] Ahlstrom H G, Coleman L W, Rienecker F et al. Diagnostics of Shiva Nova high-yield thermonuclear events[J]. Journal of the Optical Society of America, 68, 1731-1741(1978).

    [19] Soures J M. McCrory R L, Verdon C P, et al. Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system[J]. Physics of Plasmas, 3, 2108-2112(1996).

    [20] Marshall F J, Oertel J A. A framed monochromatic X-ray microscope for ICF (invited)[J]. Review of Scientific Instruments, 68, 735-739(1997).

    [21] Marshall F, Delettrez J, Epstein R et al. Diagnosis of laser-target implosions by space-resolved continuum absorption X-ray spectroscopy[J]. Physical Review E, 49, 4381-4390(1994).

    [22] Gotchev O V. Experiments on dynamic overpressure stabilization of the ablative Richtmyer-Meshkov instability in ICF targets[D]. Rochester: University of Rochester(2005).

    [23] Gotchev O V, Jaanimagi P A, Knauer J P et al. High-throughput, high-resolution Kirkpatrick-Baez microscope for advanced streaked imaging of ICF experiments on OMEGA[J]. Review of Scientific Instruments, 74, 2178-2181(2003).

    [24] Marshall F J, Oertel J A, Walsh P J. Framed, 16-image, Kirkpatrick-Baez microscope for laser-plasma X-ray emission[J]. Review of Scientific Instruments, 75, 4045-4047(2004).

    [25] Marshall F J, Bahr R E, Goncharov V N et al. A framed, 16-image Kirkpatrick-Baez X-ray microscope[J]. Review of Scientific Instruments, 88, 093702(2017).

    [26] Marshall F J, Bennett G R. A high-energy X-ray microscope for inertial confinement fusion[J]. Review of Scientific Instruments, 70, 617-619(1999).

    [27] Theobald W. Status of integrated fast-and shock-ignition experiments on omega. [C]∥OMEGA Laser Facility Users’ Group Workshop, April 29-May 1, 2009, Rochester, NY. [S.l.: s.n.], E17747-E17748(2009).

    [28] Friesen H, Tiedje H F, Hey D S et al. Kirkpatrick-Baez microscope for hard X-ray imaging of fast ignition experiments[J]. Review of Scientific Instruments, 84, 023704(2013).

    [29] Pardini T. McCarville T J, Walton C C, et al. Optical and multilayer design for the first Kirkpatrick-Baez optics for X-ray diagnostic at NIF[J]. Proceedings of SPIE, 8850, 88500E(2013).

    [30] Brejnholt N F, Ayers J J. McCarville T J, et al. Calibration results for first NIF Kirkpatrick-Baez microscope[J]. Proceedings of SPIE, 9591, 95910J(2015).

    [31] Pickworth L A, McCarville T, Decker T et al. 85(11): 11D611(2014).

    [32] Pickworth L A, Ayers J, Bell P et al. 87(11): 11E316(2016).

    [33] Li Y R, Dong J J, Xie Q et al. Development of a polar-view Kirkpatrick-Baez X-ray microscope for implosion asymmetry studies[J]. Optics Express, 27, 8348-8360(2019).

    [34] Li Y R, Mu B Z, Xie Q et al. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China’s laser fusion facility[J]. Applied Optics, 56, 3311-3318(2017).

    [35] Yi S Z, Mu B Z, Wang X et al. Imaging characteristic analysis of Kirkpatrick-Baez microscope with periodic multilayer[J]. High Power Laser and Particle Beams, 21, 1681-1685(2009).

    [36] Yi S Z. Study on experiments of Kirkpatrick-Baez microscope[D]. Shanghai: Tongji University, 25-30(2006).

    [37] Yi S Z, Zhang Z, Huang Q S et al. Eight-channel Kirkpatrick-Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments[J]. Review of Scientific Instruments, 87, 103501(2016).

    [38] Yi S Z, Zhang Z, Huang Q S et al. Note: tandem Kirkpatrick-Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics[J]. Review of Scientific Instruments, 89, 036105(2018).

    [39] Yi S Z, Zhang F, Huang Q S et al. High-resolution X-ray flash radiography of Ti characteristic lines with multilayer Kirkpatrick-Baez microscope at the Shenguang-II Update laser facility[J]. High Power Laser Science and Engineering, 9, e42(2021).

    [40] Yi S Z, Si H X, Fang K et al. High-resolution dual-energy sixteen-channel Kirkpatrick-Baez microscope for ultrafast laser plasma diagnostics[J]. Journal of the Optical Society of America B, 39, A61-A67(2022).

    [41] Yi S Z, Mu B Z, Wang X et al. Multi-energy four-channel Kirkpatrick-Baez microscope for X-ray imaging diagnostics at the Shenguang-II laser facility[J]. Chinese Optics Letters, 12, 93401(2014).

    Tools

    Get Citation

    Copy Citation Text

    Shengzhen Yi, Haoxuan Si, Qiushi Huang, Zhong Zhang, Li Jiang, Runze Qi, Zhe Zhang, Zhanshan Wang. Research Progress of Multi-Channel Kirkpatrick-Baez Microscope for X-Ray Diagnostics in Laser Inertial Confinement Fusion[J]. Acta Optica Sinica, 2022, 42(11): 1134007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Mar. 4, 2022

    Accepted: May. 4, 2022

    Published Online: Jun. 3, 2022

    The Author Email: Wang Zhanshan (wangzs@tongji.edu.cn)

    DOI:10.3788/AOS202242.1134007

    Topics