INFRARED, Volume. 42, Issue 4, 1(2021)
Performance Comparison of Single-Channel and Compensated PIMNT Pyroelectric Infrared Detectors
[1] [1] Rogalski A. Infrared Detectors: Status and Trends[J]. Prog Quantum Electron, 2003, 27(2): 59210.
[2] [2] Rogalski A. Infrared Detectors: An Overview[J]. Infrared Phys Technol, 2002, 43(3): 187210.
[4] [4] Rogalski A. History of Infrared Detectors[J]. Opto-Electron Rev, 2012, 20(3): 279308.
[7] [7] Aggarwal M D, Batra A K, Guggilla P, et al. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications[M]. Huntsville: Marshall Space Flight Center, 2010.
[8] [8] Rogalski A. Material Considerations for Third Generation Iinfrared Photon Detectors[J]. Infrared Phys Technol, 2007, 50(2): 240252.
[10] [10] Tang Y, Zhao X, Wan X, et al. Composition, DC Bias and Temperature Dependence of Pyroelectric Properties of oriented (1x)Pb(Mg1/3Nb2/3)O3xPbTiO3[J]. Mater Sci Eng B, 2005, 119(1): 7174.
[11] [11] Liu L, Li X, Wu X, et al. Dielectric, Ferroelectric, and Pyroelectric Characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3 Crystals for Infrared Detection Applications[J]. Appl Phys Lett, 2009, 95(19): 192903.
[12] [12] Tang Y, Luo H. Investigation of the Electrical Properties of (1x)Pb(Mg1/3Nb2/3)O3xPbTiO3 Single Crystals with Special Reference to Pyroelectric Detection[J]. J Phys Appl Phys, 2009, 42(7): 075406.
[13] [13] Liu L, Wu X, Wang S, et al. Growth and Pyroelectric Properties of Rhombohedral 0.21Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Ternary Single Crystals[J]. J Cryst Growth, 2011, 318(1): 856859.
[14] [14] Yu P, Wang F, Zhou D, et al. Growth and Pyroelectric Properties of High Curie Temperature Relaxor-based Ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Ternary Single Crystal[J]. Appl Phys Lett, 2008, 92(25): 252907.
[15] [15] Yang L, Li L, Zhao X, et al. Enhanced Pyroelectric Properties and Application of Tetragonal Mn-doped 0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3-0.40PbTiO3 Ternary Single Crystals[J]. J Alloys Comp, 2017, 695: 760764.
[16] [16] Li L, Zhao X, Li X, et al. Scale Effects of Low-dimensional Relaxor Ferroelectric Single Crystals and Their Application in Novel Pyroelectric Infrared Detectors[J]. Adv Mater, 2014, 26(16): 25802585.
[17] [17] Zhao X, Wu X, Liu L, et al. Pyroelectric Performances of Relaxor-based Ferroelectric Single Crystals and Related Infrared Detectors[J]. Phys Status Solidi A, 2011, 208(5): 10611067.
[18] [18] Liang Z, Li S, Liu Z, et al. High Responsivity of Pyroelectric Infrared Detector Based on Ultra-thin (10 m) LiTaO3[J]. J Mater Sci Mater Electron, 2015, 26(7): 54005404.
[19] [19] Putley E H. The Possibility of Background Limited Pyroelectric Detectors[J]. Infrared Physics, 1980, 20(3): 149156.
[20] [20] Van der Ziel A. Noise in Solid-state Devices and Lasers[J]. Proceedings of the IEEE, 1970, 58(8): 11781206.
[21] [21] Xu Q, Zhao X, Di W, et al. Noise Mechanisms Investigation in Pyroelectric Infrared Detectors Based on Mn-doped Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 vs. LiTaO3 Single Crystals[J]. Infrared Phys Technol, 2014, 67: 350353.
[22] [22] Xu Q, Zhao X, Li X, et al. 3D-printing of Inverted Pyramid Suspending Architecture for Pyroelectric Infrared Detectors with Inhibited Microphonic Effect[J]. Infrared Phys Technol, 2016, 76: 111115.
Get Citation
Copy Citation Text
ZHU Rong-feng, ZHAO Jing, ZHANG Meng-yuan, FENG Pei-gui, CHEN Jian-wei, JIAO Jie, LUO Hao-su. Performance Comparison of Single-Channel and Compensated PIMNT Pyroelectric Infrared Detectors[J]. INFRARED, 2021, 42(4): 1
Category:
Received: Dec. 18, 2020
Accepted: --
Published Online: Aug. 19, 2021
The Author Email: Jian-wei CHEN (chenjw@mail.sic.ac.cn;罗豪甦|hsluo@mail.sic.ac.cn)