Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 106(2023)

Application of Graphdiyne in Photocatalysis

JIN Zhiliang*
Author Affiliations
  • [in Chinese]
  • show less
    References(93)

    [2] [2] LI G, LI Y, LIU H, et al. Architecture of graphdiyne nanoscale films[J]. Chem Commun, 2010, 46: 3256-3258.

    [3] [3] BALABAN A, RENTIA C, CIUPITU E. Chemical graphs.6. estimation of relative stability of several planar and tridimensional lattices for elementary carbon[J]. Revue Roumaine De Chimie, 1968, 13: 231-247.

    [4] [4] LIU H, XU J, LI Y, et al. Aggregate nanostructures of organic molecular materials[J]. Acc Chem Res, 2010, 43: 1496-1508.

    [5] [5] JIA Z, LI Y, ZUO Z, et al. Synthesis and properties of 2D carbon-graphdiyne[J]. Acc Chem Res, 2017, 50: 2470-2478.

    [6] [6] LI Y. Design and self-assembly of advanced functional molecular materials-from low dimension to multi-dimension[J]. Sci Sin Chim, 2017, 47: 1045-1056.

    [7] [7] BAUGHMAN R, ECKHARDT H, KERTESZ M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms[J]. J Chem Phys 1987, 87: 6687-6699.

    [8] [8] WANG N, HE J, TU Z, et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage[J]. Angew Chem Int Ed, 2017, 56: 10740-10745.

    [9] [9] ZHOU J, GAO X, LIU R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. J Am Chem Soc, 2015, 137: 7596-7599.

    [10] [10] LIU R, GAO X, ZHOU J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Adv Mater, 2017, 29: 1604665.

    [11] [11] QANG N, LI X, TU Z, et al. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage[J]. Angew Chem Int Ed, 2018, 57: 3968-3973.

    [12] [12] HE J, WANG N, CUI Z, et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries[J]. Nat Commun, 2017, 8: 1172.

    [17] [17] WU B, LI M, XIAO S, et al. A graphyne-like porous carbon-rich network synthesized via alkyne metathesis[J]. Nanoscale, 2017, 9: 11939-11943.

    [18] [18] LEE J, LI Y, TANG J, et al. Synthesis of hydrogen substituted graphyne through mechanochemistry and its electrocatalytic properties[J]. Acta Phys - Chim Sin, 2018, 34(9): 1080-1087.

    [24] [24] LAFFERENTZ L, AMPLE F, YU H, et al. Conductance of a single conjugated polymer as a continuous function of its length[J]. Science, 2009, 323: 1193-1197.

    [25] [25] TREIER M, RICHARDSON Ne, Fabrication of surface-supported low-dimensional polyimide networks[J]. J Am Chem Soc, 2008, 130: 14054-14055.

    [26] [26] CAI J, RUFFIEUX P, JAAFAR R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466: 470-473.

    [27] [27] PEREPICHKA D, ROSEI F. Extending polymer conjugation into the second dimension[J]. Science, 2009, 323: 216-217.

    [28] [28] BIERI M, BLANKENBURG S, KIVALA M, et al. Surface-supported 2D heterotriangulene polymers[J]. Chem Commun, 2011, 47: 10239-10241.

    [29] [29] YANG Z, GEBHARDT J, SCHAUB T, et al. Two-dimensional delocalized states in organometallic bis-acetylide networks on Ag(111)[J]. Nanoscale, 2018, 10: 3769-3776.

    [30] [30] ZHANG Y, KEPCIJA N, KLEINSCHRODT M, et al. Homo-coupling of terminal alkynes on a noble metal surface[J]. Nat Commun, 2012, 3: 1286.

    [31] [31] LIU J, CHEN Q, XIAO L, et al. Lattice-directed formation of covalent and organometallic molecular wires by terminal alkynes on Ag surfaces[J]. ACS Nano, 2015, 9: 6305-6314.

    [32] [32] CIRERA B, ZHANG Y, BJORK J, et al. Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating[J]. Nano Lett, 2014, 14: 1891-1897.

    [33] [33] SUN Q, CAI L, MA H, et al. Dehalogenative homocoupling of terminal alkynyl bromides on Au(111): Incorporation of acetylenic scaffolding into surface nanostructures[J]. ACS Nano, 2016, 10: 7023-7030.

    [34] [34] SHANG H, ZOU Z, LI L, et al. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes[J]. Angew Chem Int Ed, 2018, 57: 784-778.

    [36] [36] SAKAMOTO R, HOSHIKO K, LIU Q, et al. A photofunctional bottom-up bis (dipyrrinato)zinc(II) complex nanosheet[J]. Nat. Commun, 2015, 6: 6713.

    [37] [37] DAI W, SHAO F, SZCZERBINSKI J, et al. A. Dieter Schlüter, Wei Zhang, Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angew Chem Int Ed, 2016, 55: 213-220.

    [38] [38] LIU X, GUAN C, DING S, et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions[J]. J Am Chem Soc, 2013, 135: 10470-10474.

    [39] [39] CIRERA B, ZHANG Y, KLYATSKAYA S, et al. 2?D self-assembly and catalytic homo-coupling of the terminal alkyne 1, 4-bis(3, 5-diethynyl-phenyl) butadiyne-1, 3 on Ag(111)[J]. Chem Cat Chem, 2013, 5: 3281-3288.

    [40] [40] MATSUOKA R, SAKAMOYO R, HOSHIKO K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. J Am Chem. Soc, 2017, 139: 3145-3152.

    [41] [41] KIM K, SANTOS E, LEE T, et al. Epitaxially grown strained pentacene thin film on graphene membrane[J]. Small, 2015, 11: 2037-2043.

    [42] [42] COLSON J, WOLL A, MUKHERJEE A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene[J]. Science, 2011, 332: 228-231.

    [43] [43] HUANG C, LI Y, WANG N, et al. Progress in research into 2D graphdiyne-based materials[J]. Chem Rev, 2018, 118: 7744-7803.

    [44] [44] XUE Y, LI J, XUE Z, et al. Extraordinarily durable graphdiyne- supported electrocatalyst with high activity for hydrogen production at all values of pH[J]. ACS Applied Mater Interfaces, 2016, 8: 31083-31091.

    [45] [45] XUE Y, HUANG B, YI Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nat Commun, 2018, 9: 1460.

    [46] [46] ZHAO Y, WAN J, YAO H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nature Chemistry, 2018, 10: 924-931.

    [47] [47] XUE Y, LI J, XUE Z, et al. Extraordinarily durable graphdiyne- supported electrocatalyst with high activity for hydrogen production at all values of pH[J]. ACS Appl Mater Interfaces, 2016, 8: 31083-31091.

    [48] [48] REN H, SHAO H, ZHANG L, et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells[J]. Adv Energy Mater, 2015, 5: 1500296.

    [49] [49] QI H, YU P, WANG Y, et al. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity[J]. J Am Chem. Soc, 2015, 137: 5260-5263.

    [50] [50] WANG S, YI L, HALPERT J, et al. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite[J]. Small, 2012, 8: 265-271.

    [51] [51] YANG N, LIU Y, WEN H, et al. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment[J]. ACS Nano, 2013, 7: 1504-1512.

    [52] [52] THANGAVEL S, KRISHNAMOORTHY K, KRISHNASWAMY V, et al. Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material[J]. J Phys Chem C, 2015, 119: 22057-22065.

    [53] [53] ZHANG X, ZHU M, CHEN P, et al. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent[J]. Phys Chem Chem Phys, 2015, 17: 1217-1225.

    [54] [54] DONG Y, ZHAO Y, CHEN Y, et al. Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity[J]. J Mater Sci, 2018, 53: 8921-8932.

    [55] [55] SI H, MAO C, ZHOU J, et al. Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne Author links open overlay panel[J]. Carbon, 2018, 132: 598-605.

    [56] [56] HAN Y, LU X, TANG S, et al. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride[J]. Advanced Energy Mater, 2018, 8: 1702992.

    [57] [57] LV J, ZHANG Z, WANG J, et al. In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production[J]. ACS Appl Mater Interf, 2019, 11: 2655-2661.

    [58] [58] XU Q, ZHU B, CHENG B, et al. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites[J]. Appl Catal B: Environ., 2019, 255: 117770.

    [59] [59] ZHANG L, ZHANG J, YU H, et al. Emerging S-scheme photocatalyst[J]. Adv Mater, 2022, 34: 2107668.

    [60] [60] LI Y, YANG H, WANG G, et al. Distinctive improved synthesis and application extensions graphdiyne for efficient photocatalytic hydrogen evolution[J]. Chem Cat Chem, 2020, 12: 1985-1995.

    [61] [61] SHEN X, HE J, WANG N, et al. Graphdiyne for electrochemical energy storage devices[J]. Acta Phys - Chim Sin, 2018, 34(9): 1029-1047.

    [62] [62] HUANG C, LI Y. Structure of 2D Graphdiyne and its application in energy fields[J]. Acta Phys -Chim Sin, 2016, 32(6): 1314-1329.

    [63] [63] LIU R, LIU H, LI Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6: 11336.

    [64] [64] WANG R, SHI M, XU F, et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection[J]. Nat. Commun., 2020, 11: 4465.

    [65] [65] ZHANG Y, LIU W, LI Y, et al. 2D graphdiyne oxide serves as a superior new generation of antibacterial agents[J]. Science, 2019, 19: 662-675.

    [66] [66] XU F, MENG K, ZHU B, et al. A New Photocatalytic CO2 Reduction Cocatalyst[J]. Adv. Funct. Mater, 2019, 29: 1904256.

    [67] [67] JIN Z, ZHOU Q, CHEN Y, et al. Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors[J]. Adv Mater, 2016, 28: 3697-3702.

    [68] [68] HUANG C, ZHANG S, LIU H, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11: 481-489.

    [69] [69] DU H, YANG H, HUANG C, et al. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities[J]. Nano Energy, 2016, 22: 615-622.

    [70] [70] LI Y, LI Y, Chemical modification and functionalization of graphdiyne[J]. Acta Phys -Chim Sin, 2018, 34(9): 992-1013.

    [71] [71] LIN Y, GUO X. Chemical modification of graphene and its applications[J]. Acta Phys -Chim Sin, 2014, 72: 277-288.

    [72] [72] LU X, HAN Y, LU Tongbu Lu, Structure characterization and application of graphdiyne in photocatalytic and electrocatalytic reactions[J]. Acta Phys - Chim Sin, 2018, 34(9): 1014-1028.

    [73] [73] LIU M, LI Y, Graphdiyne: from synthesis to application[J]. Acta Phys - Chim Sin, 2018, 34(9): 959-960.

    [74] [74] ZHOU J, ZHANG J, LIU Z, Advanced progress in the synthesis of graphdiyne[J]. Acta Phys - Chim Sin, 2018, 34(9): 977-991.

    [75] [75] CHEN X, ZHANG S. Modulation of molecular sensing properties of graphdiyne based on 3d impurities[J]. Acta Phys - Chim Sin, 2018, 34(9): 1061-1073.

    [76] [76] ZHAO Y, ZHANG L, QI J, et al. Graphdiyne with enhanced ability for electron transfer[J]. Acta Phys - Chim Sin, 2018, 34(9): 1048-1060.

    [77] [77] HUANG Z, YU Z, LI Y, et al. ZnO ultraviolet photodetector modified with graphdiyne[J]. Acta Phys - Chim Sin, 2018, 34(9): 1088-1094.

    [78] [78] CHEN Y, LI J, LIU H, Preparation of graphdiyne-organic conjugated molecular composite materials for lithium ion batteries[J]. Acta Phys - Chim Sin, 2018, 34(9): 1074-1079.

    [79] [79] XI J, NAKAMURA Y, ZHAO T, et al. Theoretical studies on the deformation potential, electron-phonon coupling, and carrier transports of layered systems[J]. Acta Phys - Chim Sin, 2018, 34(9): 961-976.

    [80] [80] LI Q, LI Y, CHEN Y, et al. Synthesis of γ-graphyne by mechanochemistry and its electronic Structure[J]. Carbon, 2018, 136: 248-254

    [81] [81] YANG C, QIAO C, CHEN Y, et al. Nitrogen doped γ-graphyne: A novel anode for high-capacity rechargeable alkali-ion batteries[J]. Small, 2020, 16: 1907365.

    [82] [82] YANG C, LI Y, CHEN Y, et al. Mechanchemical Synthesis of γ-Graphyne with Enhanced Lithium Storage Performance[J]. Small, 2019, 15(8): 01804710.

    [83] [83] LI Q, YANG C, WU L, et al. Converting benzene into γ-graphyne and its enhanced electrochemical oxygen evolution performance[J]. J Mater Chem A, 2019, 7: 5981-5990.

    [84] [84] WU L, LI Q, YANG C, et al. Constructing a novel TiO2/γ-graphyne heterojunction for enhanced photocatalytic hydrogen evolution[J]. J Mater Chem A, 2018, 6: 20947-20955.

    [85] [85] ZHANG X, SUN Y, CUI X, et al. A Green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution[J]. Int J Hydrogen Energy, 2012, 37: 811-815.

    [86] [86] SONG P, ZHANG X, SUN M, et al. Graphene oxide modified TiO2 nanotube arrays: Enhanced visible light photoelectrochemical properties[J]. Nanoscale, 2012, 4(5): 1800-1804.

    [87] [87] ZHANG X, LI H, CUI X, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. J Mater Chem A, 2010, 20: 2801-2806.

    [88] [88] LI Q, CHEN Y, DU F, et al. Bias-free synthesis of hydrogen peroxide from photo-driven oxygen reduction reaction using N-doped γ-graphyne catalyst[J]. Appl Catal, B, 2022, 304: 120959.

    [89] [89] LI Y, LIU Q, LI W, et al. Synthesis and supercapacitor application of alkynyl carbon materials derived from CaC2 and polyhalogenated hydrocarbons by interfacial mechanochemical reactions[J]. ACS Appl Mater Interfaces, 2017, 9, 4: 3895-3901.

    [90] [90] LI Y, LIN P, GU J, et al. The Architecture and electrochemical performance of alkynyl-linked naphthyl carbon skeleton----naphyne[J]. ACS Appl Mater Interfaces, 2020, 12, 29: 33076-33082

    [91] [91] JIN Z, ZHANG L, WANG G, et al. Graphdiyne formed a novel CuI-GD/g-C3N4 S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution[J]. Sustain Energ Fuels, 2020, 4: 5088-5101.

    [92] [92] YAN T, LIU H, JIN Z, Graphdiyne based ternary GD-CuI-NiTiO3 S-scheme heterjunction photocatalyst for hydrogen evolution[J]. ACS Appl Mater Interface, 2021, 13: 24896-24906.

    [93] [93] JIN Z, GONG H. A new allotrope of carbon -- graphdiyne (g-CnH2n?2) boosting with Mn0.2Cd0.8S form S-scheme heterjunction for efficient photocatalytic hydrogen evolution[J]. Adv Mater Interface, 2021, 8: 2100630.

    [94] [94] JIN Z, CAO Y. A new allotrope of carbon - graphdiyne synthesis and application in photocatalytic hydrogen evolution with surface plasmon resonance enhancement[J]. Sustain Energy Fuels, 2021, 5: 4690-4700.

    [95] [95] JIN Z, WANG Y. Strategy of graphdiyne (g-CnH2n?2) prepareation coupling with the flower-like NiAl-LDH heterjunctions for efficient photocatalytic hydrogen evolution[J]. Chem Eur J, 2021, 27: 1-11.

    [96] [96] CAO Y, HAO X, GUO X, et al. Graphdiyne (g-CnH2n?2) coupled with Co3O4 formed 0D/2D p-n heterojunction for efficient hydrogen evolution[J]. Ind Eng Chem Res, 2021, 60: 18397-18407.

    [97] [97] SU P, LIU H, JIN Z. Hierarchical Co3(PO4)2/CuI/g-CnH2n?2 S-scheme heterojunction for efficient photocatalytic hydrogen evolution[J]. Inorg Chem, 2021, 60: 19402-19413.

    [98] [98] JIN Z, LI T, ZHANG L, et al. Construction of tandem S-scheme GDY/CuI/CdS-R heterostructure base on morphology-regulated graphdiyne (g-CnH2n?2) for enhanced photocatalytic hydrogen evolution[J]. J Mater Chem A, 2022, 10: 1976-1991.

    [99] [99] LI J, LI M, LI H, et al. Novel CuBr-assisted graphdiyne synthesis strategy and application for efficient photocatalytic hydrogen evolution[J]. J Mater Chem C, 2022, 10: 2181-2193.

    [100] [100] JIN Z, LI H, LI J. Efficient photocatalytic hydrogen evolution over graphdiyne boosting with a cobalt sulfide formed S-scheme heterojunctions[J]. Chin J Catal, 2022, 43: 303-315.

    [101] [101] JIN Z, WANG X, HAO X, et al. Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution[J]. 2D Mater, 2022, 9(2): 025014.

    [102] [102] FAN Z, GUO X, YANG M, et al. Mechanochemically preparation and application of graphdiyne for efficient photocatalytic hydrogen production coupled with CdSe nanoparticles[J]. Chin J Catal, 2022, Doi: 10.1016/S1872-2067(22)63732-4.

    [103] [103] LI Y, YANG H, WANG G, et al. Distinctive improved synthesis and application extensions graphdiyne for efficient photocatalytic hydrogen evolution[J]. Chem Cat Chem, 2020, 12: 1985-1995.

    [104] [104] FANG Y, LIU Y, QI L, et al. 2D graphdiyne: An emerging carbon material[J]. Chem Soc Rev, 2022, 51: 2681-2709.

    Tools

    Get Citation

    Copy Citation Text

    JIN Zhiliang. Application of Graphdiyne in Photocatalysis[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jul. 19, 2022

    Accepted: --

    Published Online: Mar. 10, 2023

    The Author Email: Zhiliang JIN (zl-jin@nun.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220336

    Topics