Journal of Synthetic Crystals, Volume. 49, Issue 10, 1848(2020)

Effect of Reduction Nitriding Temperature on the Composition,Structure and Electrochemical Properties of Niobium Nitride Nanotubes

WANG Xuepei1...2,*, HU Shilei1,2, CUI Shuai1,2, LYU Dongfeng1,2, XU Jingyue1,2, WEI Hengyong1,2, CUI Yi1,2, CHEN Yuejun1,2, WEI Yingna1,2, and BU Jinglong12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(30)

    [1] [1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7: 845-854.

    [3] [3] Lu X F, Li G R, Tong Y X. A review of negative electrode materials for electrochemical supercapacitors[J]. Science China Technological Sciences, 2015, 58(11): 1799-1808.

    [4] [4] Conway B E. Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York: Kluwer Academic/Plenum Press, 1999.

    [6] [6] Wei G, Neelam Singh, Li S, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 2011, 6(8): 496-500.

    [8] [8] Xu B, Chen Y F, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J]. Materials Chemistry & Physics, 2010, 124(1): 504-509.

    [9] [9] Wang H Y, Li B, Teng J X, et al. N-doped carbon-coated TiN exhibiting excellent electrochemical performance for supercapacitors[J]. Electrochimica Acta, 2017, 257: 56-63.

    [10] [10] Saravanakumar B, Purushothaman K K, Muralidharan G. Interconnected V2O5 nanoporous network for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4484-4490.

    [12] [12] Sun D F, Lang J W, Yan X B, et al. Fabrication of TiN nanorods by electrospinning and their electrochemical properties[J]. Journal of Solid State Chemistry, 2011, 184(5): 1333-1338.

    [13] [13] Xie Y B, Wang Y, Du H X. Electrochemical capacitance performance of titanium nitride nanoarray[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178(20): 1443-1451.

    [14] [14] An G H, Lee D Y, Ahn H J. Vanadium nitride encapsulated carbon fibre networks with furrowed porous surfaces for ultrafast asymmetric supercapacitors with robust cycle life[J]. Journal of Materials Chemistry A, 2017, 5(37): 19714-19720.16-19.

    [15] [15] Lee K H, Lee Y W, Ko A R, et al. Single-crystalline mesoporous molybdenum nitride nanowires with improved electrochemical properties[J]. Journal of the American Ceramic Society, 2013, 96(1): 37-39.

    [16] [16] Zhao J H, Lin J, Wei H, et al. Surface enhanced Raman scattering substrates based on titanium nitride nanorods[J]. Optical Materials, 2015, 47: 219-224.

    [19] [19] Gao B, Xiao X, Su J J, et al. Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties[J]. Applied Surface Science, 2016, 383: 57-63.

    [21] [21] Wang P Y, Wang R T, Lang J W, et al. Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(25): 9760-9766.

    [22] [22] Huang C, Yang Y, Fu J J, et al. Flexible Nb4N5/rGO electrode for high-performance solid state supercapacitors[J]. Nanoscience and Nanotechnology, 2018, 18: 30-38.

    [23] [23] Wang G, Qian B Q, Wang Y W, et al. Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization[J]. New Journal of Chemistry, 2016, 40(4): 3786-3792.

    [24] [24] Arico A, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-77.

    [25] [25] An K H, Won S, Kim Y, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Advanced Functional Materials, 2001, 11(5): 387-392.

    [26] [26] Kaempgen M, Candace K Chan, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes[J]. Nano Letters, 2009, 9(5): 1872.

    [27] [27] Lu X H, Wang G N, Zhai T, et al. Hydrogenated TiO2 Nanotube Arrays for Supercapacitors[J]. Nano Letters, 2012, 12(3): 1690-1696.

    [28] [28] Yang Y, Ruan G D, Xiang C S, et al. Flexible three-dimensional nanoporous metal-based energy devices[J]. Journal of the American Chemical Society, 2014, 136(17): 6187-6190.

    [29] [29] Cui H L, Zhu G L, Liu X Y, et al. Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors[J]. Advanced Science, 2016, 2(12): 1500126.

    [30] [30] Mirvakili S M, Hunter I W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors[J]. Advanced Materials, 2017, 29(27): 1700671.1-1700671.6.

    [31] [31] Liu K, Yao Y, Lv T, et al. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors[J]. Journal of Power Sources, 2020, 446: 227355.

    [32] [32] Koscielska B. Electrical conductivity of NbN-SiO2 films obtained by ammonolysis of Nb2O5-SiO2 sol-gel derived coatings[J]. Journal of Non-Crystalline Solids, 2008, 354(14): 1549-1552.

    [33] [33] Alfonso J E, Buitrago J, Torres J, et al. Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by rf magnetron sputtering[J]. Journal of Materials Science, 2010, 45(20): 5528-5533.

    [34] [34] Jouve G, Severac C, Cantacuzene S. XPS study of NbN and (NbTi)N superconducting coatings[J]. Thin Solid Films, 1996, 287(1-2): 146-153.

    [35] [35] Baunemann A, Bekermann D, Thiede T B, et al. Mixed amido/imido/guanidinato complexes of niobium:potential precursors for MOCVD of niobium nitride thin films[J]. Dalton Transactions, 2008, 28(28): 3715-3722.

    [36] [36] Gao S S, Tang Y K, Wang L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263.

    [39] [39] Shim H W, Lim A H, Kim J C, et al. Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co3O4 superstructure for supercapacitor electrodes[J]. Scientific Reports, 2013, 3(7): 2325.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xuepei, HU Shilei, CUI Shuai, LYU Dongfeng, XU Jingyue, WEI Hengyong, CUI Yi, CHEN Yuejun, WEI Yingna, BU Jinglong. Effect of Reduction Nitriding Temperature on the Composition,Structure and Electrochemical Properties of Niobium Nitride Nanotubes[J]. Journal of Synthetic Crystals, 2020, 49(10): 1848

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 9, 2021

    The Author Email: Xuepei WANG (1349118311@qq.com)

    DOI:

    CSTR:32186.14.

    Topics