Infrared and Laser Engineering, Volume. 51, Issue 6, 20220133(2022)
Research progress of single-frequency fiber laser based on Re: YAG-SiO2 fiber (Invited)
[1] Chiodo N, Djerroud K, Acef O, et al. Lasers for coherent optical satellite links with large dynamics[J]. Applied Optics, 52, 7342-7351(2013).
[2] Chen T, Kong W, Liu H, et al. Frequency-stepped pulse train generation in an amplified frequency-shifted loop for oxygen A-band spectroscopy[J]. Optics Express, 26, 34753-34762(2018).
[3] Abbott B P, Abbott R, Abbott T D, et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence[J]. Physical Review Letters, 116, 241103(2016).
[4] Abari C, Tegtmeier Pedersen A, Dellwik E, et al. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar[J]. Atmospheric Measurement Techniques, 8, 4145-4153(2015).
[5] [5] Cao C Y. Study on key techniques of high perfmance fiberoptics hyhone array based on ultraremotely optical transmission caded amplifiers[D]. Changsha: National University of Defense Technology, 2013. (in Chinese)
[6] Cheng Y, Kringlebotn J T, Loh W H, et al. Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow- band filter[J]. Optics Letters, 20, 875-877(1995).
[7] Park N, Dawson J, Vahala K, et al. All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter[J]. Applied Physics Letters, 59, 2369-2371(1991).
[8] Chen J W, Zhao Y, Zhu Y N, et al. Narrow line-width ytterbium-doped fiber ring laser based on saturated absorber[J]. IEEE Photonics Technology Letters, 29, 439-441(2017).
[9] Ma X X, Lu B L, Wang K L, . Tunable broadband single-frequency narrow-linewidth fiber laser[J]. Acta Optica Sinica, 39, 0114001(2019).
[10] Wang X, Yan F P, Han W G. Single longitudinal mode narrow linewidth thulium-doped fiber laser with special subring cavity[J]. Chinese Journal of Lasers, 46, 0901001(2019).
[11] Kringlebotn J T, Archambault J L, Reekie L, et al. Er3+: Yb3+-codoped fiber distributed-feedback laser[J]. Optics Letters, 19, 2101-2103(1994).
[12] Dong L, Loh W H, Caplen J E, et al. Efficient single- frequency fiber lasers with novel photosensitive Er/Yb optical fibers[J]. Optics Letters, 22, 694-696(1997).
[13] Fan W, Chen B, Li X C, et al. Stress-induced single polarization DFB fiber lasers[J]. Optics Communications, 204, 157-161(2002).
[14] Ball G A, Morey W W. Standing-wave monomode erbium fiber laser[J]. IEEE Photonics Technology Letters, 3, 613-615(1991).
[15] Syzskind J L, Mizrahi V, Digiovanni D J, et al. Short single frequency erbium-doped fibre laser[J]. Electronics Letters, 28, 1385-1387(1992).
[16] Kringlebotn J T, Morkel P R, Reekie L, et al. Efficient diode-pumped single-frequency erbium: ytterbium fiber laser[J]. IEEE Photonics Technology Letters, 5, 1162-1164(1993).
[17] Cranch G A, Englund M A, Kirkendall C K, et al. Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers[J]. IEEE Journal of Quantum Electronics, 39, 1579-1587(2004).
[18] Loranger S, Korpov V, Shinn G W, et al. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers[J]. Optics Letters, 42, 3864-3867(2017).
[19] Spiegelberg C, Geng J, Hu Y, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 22, 57-62(2004).
[20] Fang Q, Xu Y, Fu S J, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 41, 1829-1832(2016).
[21] Yang C S, Cen X, Xu S H, . Research progress of single-frequency fiber laser(Invited)[J]. Acta Optica Sinica, 41, 0114002(2021).
[22] Delevaque T, Georges T, Monerie M, et al. Modeling of pair-induced quenching in erbium-doped silicate fibers[J]. IEEE Photonics Technology Letters, 5, 73-75(1993).
[23] Zhang Y M, Qian G Q, Xiao X S, et al. The preparation of Yttrium Aluminosilicate (YAS) glass fiber with heavy doping of Tm3+ from Polycrystalline YAG ceramics[J]. Journal of the American Ceramic Society, 101, 4627-4633(2018).
[24] Xie Y Y, Liu Z J, Cong Z H, et al. All-fiber-integrated Yb: YAG-derived silica fiber laser generating 6 W output power[J]. Optics Express, 27, 3791-3798(2019).
[25] Wan Y, Wen J X, Dong Y H, et al. An exceeding 50% slope efficiency DBR fiber laser based on Yb-doped crystal-derived silica fiber with high gain per unit length[J]. Optics Express, 28, 23771-23783(2020).
[26] Qian G Q, Wang W L, Tang G W, et al. Tm: YAG ceramic derived multimaterial fiber with high gain per unit length for all-fiber mode-locked fiber laser applications[J]. Optics Letters, 45, 1047-1050(2020).
[27] Tang G W, Qian G Q, Lin W, et al. Broadband 2 μm amplified spontaneous emission of Ho/Cr/Tm: YAG crystal derived all-glass fibers for mode-locked fiber laser applications[J]. Optics Letters, 44, 3290-3293(2019).
[28] Huang Y C, Lu Y K, Chen J C, et al. Broadband emission from Cr-doped fibers fabricated by drawing tower[J]. Optics Express, 14, 8492-8497(2006).
[29] Ballato J, Hawkins T, Foy P, et al. On the fabrication of all-glass optical fibers from crystals[J]. Journal of Applied Physics, 105, 53110(2009).
[30] Dragic P, Law P, Ballato J, et al. Brillouin spectroscopy of YAG-derived optical fibers[J]. Optics Express, 18, 10055-10067(2010).
[31] Ballato J, Dragic P D. Characterisation of Raman gain spectra in Yb: YAG-derived optical fibres[J]. Electronics Letters, 49, 895-896(2013).
[32] Dragic P D, Ballato J, Hawkins T, et al. Feasibility study of Yb: YAG-derived silicate fibers with large Yb content as gain media[J]. Optical Materials, 34, 1294-1298(2012).
[33] Geng J H, Wang Q, Luo T, et al. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber[J]. Optics Letters, 34, 3493-3495(2009).
[34] Zhang Y M, Qian G Q, Xiao X S, et al. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method[J]. Journal of the American Ceramic Society, 101, 1616-1622(2017).
[35] Zhang Y M, Sun Y, Wen J X, et al. Investigation on the formation and regulation of yttrium aluminosilicate fiber driven by spontaneous element migration[J]. Ceramics International, 45, 19182-19188(2019).
[36] Zheng S P, Li J, Yu C L, et al. Preparation and characterizations of Nd: YAG ceramic derived silica fibers drawn by post-feeding molten core approach[J]. Optics Express, 24, 24248(2016).
[37] Zheng S P, Li J, Yu C L, et al. Preparation and characterizations of Yb: YAG-derived silica fibers drawn by on-line feeding molten core approach[J]. Ceramics International, 43, 5837-5841(2017).
[38] Li C Z, Jia Z X, Cong Z H, et al. Gain characteristics of ytterbium-doped SiO2-Al2O3-Y2O3 fibers[J]. Laser Physics, 29, 55804(2019).
[39] Xie Yongyao, Cong Zhenhua, Zhao Zhigang, et al. Preparation of Er:YAG crystal-derived all-glass silica fibers for a 1550-nm single-frequency laser[J]. Journal of Lightwave Technology, 39, 4769-4775(2021).
[40] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).
[41] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives(Invited)[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[42] Leconte B, Gilles H, Robin T, et al. 7.5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser[J]. Optics Express, 26, 10000-10006(2018).
[43] Bode M, Freitag I, Tünnermann A, et al. Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region[J]. Optics Letters, 22, 1220-1222(1997).
[44] Zhu X S, Shi W, Zong J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J]. Optics Letters, 37, 4167-4169(2012).
[45] Bouchier A, Lucasleclin G, Georges P, et al. Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO: LiNbO3 waveguide[J]. Optics Express, 13, 6974-6979(2005).
[46] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications(Invited)[J]. Applied Optics, 53, 6554-6568(2014).
[47] [47] Zhang Y M, Qiu J Q. Yttrium aluminosilicate (YAS) fiber with heavily doped of Nd f single frequency laser[C]Asia Communications Photonics Conference(ACP), 2018.
[48] [48] Shao X B. Preparation, acterization single frequency laser technology of Nd: YAG crystal derived fiber[D]. Jinan: Shong University, 2021. (in Chinese)
[49] Wang Y F, Zhang Y M, Cao J K, et al. 915 nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser[J]. Optics Letters, 44, 2153-2156(2019).
[50] Shao X B, Chen X H, Cong Z H, . Single-frequency Nd: YAG crystal-derived fiber laser at 915 nm[J]. Acta Optica Sinica, 41, 2206001(2021).
[51] [51] Ma X Y, Study on luminescence laser acteristics of ytterbium doped fiber[D]. Wuhan: Huazhong University of Science Technology, 2019. (in Chinese)
[52] [52] Zhou G D. Preparation study of highly Yb3+doped doubleclad phosphate fiber[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
[53] [53] Huang J. Investigation of singlefrequency distributed Bragg reflect fiber laser with highly Ybdoped silica fiber[D]. Xi''an: Nthwest University, 2017. (in Chinese)
[54] [54] Xie Y Y. Studies of singlefrequency laser based on YAG crystalderived silica[D]. Jinan: Shong University, 2021. (in Chinese)
[55] Zhang Y M, Wang W W, Li J, et al. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser[J]. Journal of the American Ceramic Society, 102, 2551-2557(2019).
[56] Liu Z J, Xie Y Y, Cong Z H, et al. 110 mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064 nm[J]. Optics Letters, 44, 4307-4310(2019).
[57] [57] Jiang M Y. Design research of single frequency laser based on Yb: YAG crystal derived fiber[D]. Jinan: Shong University, 2021. (in Chinese)
[58] Xie Y Y, Cong Z H, Zhao Z G, et al. Linearly polarized single-frequency fiber laser based on the Yb: YAG-crystal derived silica fiber[J]. Applied Optics, 59, 9931-9936(2020).
[59] Gao X B, Cong Z H, Zhao Z J, et al. Single-frequency kHz-linewidth 1070 nm laser based on Yb: YAG derived silica fiber[J]. IEEE Photonics Technology Letters, 32, 895-898(2020).
[60] Xie Y Y, Cong Z H, Zhao Z G, . A 976 nm single-frequency laser based on the Yb: YAG crystal-derived fiber[J]. Chinese Journal of Lasers, 48, 1201010(2021).
[61] Wan Y, Wen J X, Jiang C, et al. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber[J]. Photonics Research, 9, 649-656(2021).
[62] Wan Y, Wen J X, Jiang C, et al. Over 100 mW stable low-noise single-frequency ring-cavity fiber laser based on a saturable absorber of Bi/Er/Yb co-doped silica fiber[J]. Journal of Lightwave Technology, 40, 805-812(2022).
[63] Qi F, Zheng B L, Yang J, et al. Fabrication of yttrium aluminosilicate fibers with high Yb3+ doping from Yb: YAG ceramic nanopowders and its application in single-frequency fiber lasers[J]. Optical Materials Express, 12, 876-884(2022).
[64] Ishii S, Mizutani K, Fukuoka H, et al. Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device[J]. Applied Optics, 49, 1809-1817(2010).
[65] [65] Engin D, Chuang T, Stm M. Compact, highly efficient, athermal, 25 W, 2051 nm Tmfiber based MOPA f CO2 tracegas laser space transmitter[C]Proceedings of SPIE LASE, 2017, 10083: 1008325.
[66] Zhang Z, Boyland A J, Sahu J K, et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm[J]. IEEE Photonics Technology Letters, 23, 417-419(2011).
Get Citation
Copy Citation Text
Zhenshuai Wei, Yongyao Xie, Xianbin Shao, Jundu Liu, Wei Zhao, Xian Zhao, Xingyu Zhang, Zhigang Zhao, Zhenhua Cong, Zhaojun Liu. Research progress of single-frequency fiber laser based on Re: YAG-SiO2 fiber (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220133
Category: Special issu
Received: Feb. 28, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: