Journal of the Chinese Ceramic Society, Volume. 50, Issue 3, 598(2022)
Recent Progress on Textured Lead-Titanite Based Piezoelectric Ceramics
[1] [1] ZHANG Z, LI F, CHEN R, et al. High performance ultrasound needle transducer based on modified PMN-PT ceramic with ultrahigh clamped dielectric permittivity[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2018, 65(2): 223-230.
[3] [3] GAO X, QIU C, LI G, et al. High output power density of a shear-mode piezoelectric energy harvester based on Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Appl Energ, 2020, 271: 115193.
[7] [7] YAN C, LAM K H, DA N Z, et al. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications[J]. Sensors, 2014, 14(8): 13730-13758.
[10] [10] DA S, WERNECK M M. Optical high-voltage sensor based on fiber bragg grating and PZT piezoelectric ceramics[J]. IEEE T Instrum Meas, 2011, 60(6): 2118-2125.
[11] [11] PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J]. J Appl Phys, 1997, 82(4): 1804-1811.
[12] [12] SERVICE R F, Shape-changing crystals get shiftier[J]. Science, 1997, 275: 1878.
[13] [13] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science 2019, 364(6437): 264-268.
[14] [14] LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nat Mater, 2018, 17(4): 349-354.
[15] [15] MESSING G L, POTERALA S, CHANG Y, et al. Texture-engineered ceramics-property enhancements through crystallographic tailoring[J]. J Mater Res, 2017, 32: 3219-3241.
[16] [16] SARANYA D, CHAUDHURI A R, PARUI J, et al. Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary[J]. B Mater Sci, 2009, 32(3): 259-262.
[17] [17] UEBERSCHLAG P. PVDF piezoelectric polymer[J]. Sensor Rev, 2001, 21(2): 118-126.
[18] [18] LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals[J]. Nat Commun, 2016, 7: 13807.
[19] [19] PHELAN D, STOCK C, RODRIGUE-RIVERA J A, et al. The role of random electric fields in relaxors[J]. Proc Natl Acad Sci USA, 2014, 111(5): 1754-1759.
[20] [20] XU G, ZHONG Z, BING Y, et al. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric[J]. Nat Mater, 2006, 5(2): 134-140.
[21] [21] TAKENAKA T, SAKATA K. Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics[J]. Jpn J Appl Phys, 1980, 19(1): 31-39.
[22] [22] DURAN C, TROLIER-MCKINSTRY S, MESSING G L. Fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth[J]. J Am Ceram Soc, 2010, 83(9): 2203-2213.
[23] [23] WEI Z, JING Y, YING X, et al. Fabrication of Na0.5Bi0.5TiO3-BaTiO3-textured ceramics templated by plate-like Na0.5Bi0.5TiO3 particles[J]. J Am Ceram Soc, 2010, 92(7): 1607-1609.
[24] [24] GAO X, DONG N, XIA F, et al. Impact of phase structure on piezoelectric properties of textured lead-free ceramics[J]. Crystals, 2020, 10(5): 367.
[25] [25] LI, P, ZHAI J, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics[J]. Adv Mater, 2018, 30(8): 1705171.
[26] [26] MESSING G L, TROLIER-MCKINSTRY S, SABOLSKY E M, et al. Templated grain growth of textured piezoelectric ceramics[J]. Crit Rev Solid State, 2004, 29(2): 45-96
[27] [27] WALTON R L, BROVA M J, WATSON B H, et al. Direct writing of textured ceramics using anisotropic nozzles[J]. J Eur Ceram Soc, 2020, 41(3): 1945-1953.
[28] [28] WATSON B H, BROVA M J, FANTON M, et al. Textured Mn-doped PIN-PMN-PT ceramics: harnessing intrinsic piezoelectricity for high-power transducer applications[J]. J Eur Ceram Soc, 2020, 41(2): 1270-1279.
[29] [29] ZHANG S, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. J Appl Phys, 2012, 111(3): 2-27.
[30] [30] LIU X, ZHANG S, LUO J, et al. A complete set of material properties of single domain 0.26Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystals[J]. Appl Phys Lett, 2010, 96(1): 064106.
[31] [31] LI F, ZAHNG S, LIN D, et al. Electromechanical properties of Pb(In1/2Nb1/2)O3-(Mg1/3Nb2/3)O3-PbTiO3single crystals[J]. J Appl Phys, 2011 109: 014108.
[32] [32] MORIANA A D, ZHANG S. Lead-free textured piezoceramics using tape casting: A review[J]. J Materiomics, 2018, 4: 277-303.
[33] [33] YAN Y, YANG L, YUAN Z, et al. Enhanced temperature stability in textured tetragonal Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics[J]. J Appl Phys, 2015, 118: 104101.
[34] [34] LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II[J]. J Inorg Nucl Chem, 1960, 16(1-2): 100-108.
[35] [35] YAN Y, ZHOU Y, PRIYA S. Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3-PbTiO3 C radially textured cylinders[J]. Appl Phys Lett, 2014, 104(1): 012910.
[36] [36] CHANG Y, WU J, LIU Z, et al. Grain-oriented ferroelectric ceramics with single-crystal-like piezoelectric properties and low texture temperature[J]. ACS Appl Mater Inter, 2020, 12(34): 38415-38424.
[37] [37] YANG S, LI J, LIU Y, et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range[J]. Nat Commun, 2021, 12: 1414.
[38] [38] POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J, et al. Processing, texture quality, and piezoelectric properties of C textured (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiO3 ceramics[J]. J Appl Phys, 2011, 110(1): 014105.
[39] [39] KIMURA T, YOSHIMOTO T, LIDA N, et al. Mechanism of grain orientation during hot-pressing of bismuth titanate[J]. J Am Ceram Soc, 1989, 72(1): 85-89.
[40] [40] GELFUSO M V, THOMAZINI D, EIRAS J A. Synthesis and structural, ferroelectric, and piezoelectric properties of SrBi4Ti4O15 ceramics[J]. J Am Ceram Soc, 1999, 82(9): 2368-2372.
[41] [41] KIMURA T, YAMAGUCHI T. Fused salt synthesis of Bi4Ti3O12[J]. Ceram Int, 1983, 9(1): 13-17.
[42] [42] GOYAL A, FEENSTRA R, LIST F A, et al. Using RABiTS to fabricate high-temperature superconducting wire[J]. JOM, 1999, 51(7): 19-23.
[43] [43] RATHENAU G W, SMIT J, STUYTS A L. Ferromagnetic properties of hexagonal iron-oxide compounds with and without a preferred orientation[J]. Z Phys A: Hadrons Nucl, 1952, 133: 250-260.
[44] [44] TANI T. Crystalline-oriented piezoelectric bulk ceramics with a perovskite-type structure[J]. J Korean Phys Soc, 1998, 32: S1217-S1220.
[45] [45] TAKEUCHI T, TANI T, SAITO Y. Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method[J]. Jpn J Appl Phys, 1999, 38: 5553-5556.
[46] [46] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.
[47] [47] GAO F, CHENG L H, HONG R Z, et al. Fabrication and dielectric properties of textured Na0.5Bi0.5TiO3-BaTiO3 ceramics by RTGG method[J]. J Mater Sci-Mater El, 2008, 19(12): 1228-1232.
[48] [48] TAKEUCHI T, TANI T, SAITO Y. Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion[J]. Jpn J Appl Phys, 2000, 39: 5577-5580.
[49] [49] REMEIKA J P, JACKSON W M. A method for growing barium titanate single crystals[J]. J Am Chem Soc, 1954, 76(3): 940-941.
[50] [50] SABOLSKY E M, JAMES A R, KWON S, et al. Piezoelectric properties of textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics[J]. Appl Phys Lett, 2001, 78(17): 2551-2553.
[51] [51] LIU D, YAN Y K, ZHOU H P. Synthesis of micron-scale platelet BaTiO3[J]. J Am Ceram Soc, 2007, 90(4): 1323-1326.
[52] [52] WATARI K, BRAHMAROUTU B, MESSING G L, et al. Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3[J]. J Mater Res, 2011, 15(4): 846-849.
[53] [53] KWON S, SABOLSKY E M, MESSING G L, et al. High strain, textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties[J]. J Am Ceram Soc, 2005, 88(2): 312-317.
[54] [54] WU J, CHANG, Y, LV W, et al. Topochemical transformation of single crystalline SrTiO3 microplatelets from Bi4Ti3O12 precursors and their orientation-dependent surface piezoelectricity[J]. CrystEngComm, 2018, 20: 3084-3095.
[55] [55] YAN Y, ZHOU J E, MAURYA D, et al. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material[J]. Nat Commun, 2016, 7: 13089.
[56] [56] SABOLSKY E M, MESSING G L, TROLIER-MCKINSTRY S. Kinetics of templated grain growth of 0.65Pb(Mg1/3Nb2/3)O3- 0.35PbTiO3[J]. J Am Ceram Soc, 2010, 84(11): 2507-2513.
[57] [57] BROSNAN K H, MESSING G L, MEYER J R J, et al. Texture measurements in fiber-oriented PMN-PT[J]. J Am Ceram Soc, 2006, 89(6): 1965-1971.
[58] [58] YAN Y, WANG Y U, PRIYA S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics[J]. Appl Phys Lett, 2012, 100(19): 192905.
[59] [59] MESSING G L, POTERALA S, CHANG Y, et al. Texture-engineered ceramics-property enhancements through crystallographic tailoring[J]. J Mater Res, 2017, 32: 3219-3241.
[60] [60] SEABAUGH M M, KERSCHT I H, MESSING G L. Texture development by templated grain growth in liquid-phase-sintered α-Alumina[J]. J Am Ceram Soc, 1997, 80(5): 1181-1188.
[61] [61] YAN Y, CHO K, PRIYA S. Templated grain growth of -textured 0.675Pb(Mg1/3Nb2/3)O3-0.325PbTiO3 piezoelectric ceramics for magnetic field sensors[J]. J Am Ceram Soc, 2011, 94(6): 1784-1793.
[62] [62] CHANG Y, WATSON B, FANTON M, et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics[J]. Appl Phys Lett, 2017, 111(23): 232901.
[63] [63] WEI D, YUAN Q B, ZHANG G Q, et al. Templated grain growth and piezoelectric properties of -textured PIN-PMN-PT ceramics[J]. J Mater Res, 2015, 30(14): 2144-2150.
[64] [64] YAN Y, CHO K H, PRIYA S. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics[J]. Appl Phys Lett, 2012, 100(13): 132908.
Get Citation
Copy Citation Text
YANG Shuai, WANG Mingwen, WU Jie, I Jinglei, GAO Xiangyu, XU Zhuo, LI Fei. Recent Progress on Textured Lead-Titanite Based Piezoelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 598
Special Issue:
Received: Aug. 10, 2021
Accepted: --
Published Online: Nov. 11, 2022
The Author Email: