Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 101(2022)
Application of Vanadium-Based Anode Materials for Lithium-Ion Capacitors
[1] [1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294–303.
[2] [2] MASSé RC, LIU C, LI Y, et al. Energy storage through intercalation reactions: Electrodes for rechargeable batteries[J]. Nat Sci Rev, 2017,4(1): 26–53.
[3] [3] WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chem Rev, 2018, 118(23): 11433–11456.
[5] [5] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chem Soc Rev, 2012, 41(2):797–828.
[7] [7] AMATUCCI G G, BADWAY F, DU PASQUIER A, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. J Electrochem Soc, 2001, 148(8): A930.
[8] [8] JIN L, SHEN C, SHELLIKERI A, et al. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors[J]. Energ Environ Sci, 2020, 13(8): 2341–2362.
[9] [9] LI B, ZHENG J, ZHANG H, et al. Electrode materials, electrolytes,and challenges in nonaqueous lithium-ion capacitors[J]. Adv Mater,2018, 30(17): 1705670.
[10] [10] ARAVINDAN V, GNANARAJ J, LEE Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chem Rev, 2014,114(23): 11619–11635.
[11] [11] LI S, CHEN J, CUI M, et al. A high-performance lithium-ion capacitor based on 2D nanosheet materials [J]. Small, 2016, 13(6): 1602893.
[12] [12] DING J, HU W, PAEK E, et al. Review of hybrid ion capacitors: From aqueous to lithium to sodium[J]. Chem Rev, 2018, 118(14): 6457–6498.
[13] [13] WANG X, LIU L, NIU Z. Carbon-based materials for lithium-ion capacitors[J]. Mater Chem Front, 2019, 3(7): 1265–1279.
[14] [14] JAGADALE A, ZHOU X, XIONG R, et al. Lithium ion capacitors(LICs): Development of the materials[J]. Energy Storage Mater, 2019,19: 314–329.
[15] [15] HAN C, LI H, SHI R, et al. Nanostructured anode materials for non-aqueous lithium ion hybrid capacitors[J]. Energ Environ Mater,2018, 1(2): 75–87.
[17] [17] CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides: Batteries and electrochromics[J]. J Mater Chem, 2009, 19(17): 2526–2552.
[18] [18] WANG X, ZHENG S, WANG S, et al. Self-anchoring dendritic ternary vanadate compound on graphene nanoflake as highperformance conversion-type anode for lithium ion batteries[J]. Nano Energy, 2016, 22: 179–88.
[19] [19] MO J, ZHANG X, LIU J, et al. Progress on Li3VO4 as a promising anode material for Li-ion batteries[J]. Chin J Chem 2017, 35(12):1789–1796.
[20] [20] NI S, LIU J, CHAO D, et al. Vanadate-based materials for Li-ion batteries: The search for anodes for practical applications[J]. Adv Energy Mater, 2019, 9(14): 1803324.
[21] [21] YUE Y, HAN P, DONG S, et al. Nanostructured transition metal nitride composites as energy storage material[J]. Chin Sci Bull, 2012,57(32): 4111–4118.
[22] [22] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. J Am Chem Soc, 2013, 135(43): 15966–15969.
[24] [24] ZHOU R, LI X, PANG H. VOx/VSx@graphene nanocomposites for electrochemical energy storage[J]. Chem Eng J, 2021, 404: 126310.
[25] [25] LI H, LIU X, ZHAI T, et al. Li3VO4: A promising insertion anode material for lithium-ion batteries[J]. Adv Energy Mater, 2013, 3(4):428–432.
[26] [26] LIANG Z, LIN Z, ZHAO Y, et al. New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism[J]. J Power Sources,2015, 274: 345–354.
[27] [27] ARROYO-DE DOMPABLO M E, TARTAJ P, AMARILLA J M, et al.Computational investigation of Li insertion in Li3VO4[J]. Chem Mater,2016, 28(16): 5643–5651.
[28] [28] SHEN L, CHEN S, MAIER J, et al. Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries[J]. Adv Mater, 2017, 29(33): 1701571.
[29] [29] QIN R, SHAO G, HOU J, et al. One-pot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries[J]. Sci Bull, 2017, 62(15):1081–1088.
[30] [30] QIN P, LV X, LI C, et al. Morphology inheritance synthesis of carbon-coated Li3VO4 rods as anode for lithium-ion battery[J]. Sci Chin Mater, 2019, 62(8): 1105–1114.
[31] [31] XU J, LIANG P, ZHANG D, et al. A reverse-design-strategy for C@Li3VO4 nanoflakes toward superb high-rate Li-ion storage[J]. J Mater Chem A, 2021, 9(32): 17270–17280.
[32] [32] SHI Y, WANG J-Z, CHOU S-L, et al. Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries[J]. Nano Lett, 2013, 13(10): 4715–4720.
[33] [33] LIU J, LU P-J, LIANG S, et al. Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties[J]. Nano Energy, 2015, 12: 709–724.
[34] [34] ZHANG M, DONG L, ZHANG C, et al. Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors[J]. J Power Sources, 2020, 468: 228364.
[35] [35] IWAMA E, KAWABATA N, NISHIO N, et al. Enhanced electrochemical performance of ultracentrifugation-derived nc-Li3VO4/MWCNT composites for hybrid supercapacitors[J]. ACS Nano, 2016, 10(5): 5398–5404.
[36] [36] KANG T, NI S, CHEN Q, et al. Ag embedded Li3VO4 as superior anode for Li-ion batteries[J]. J Electrochem Soc, 2019, 166(3):A5295–A300.
[37] [37] HUANG Y, YANG H, ZHANG Y, et al. A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4[J]. J Mater Chem A, 2019, 7(18): 11250–11256.
[38] [38] YANG S, ZHANG D, XU J, et al. Robust pseudocapacitive charge storage behavior in Li3VO4 induced by N doped MXene[J].Electrochim Acta, 2021, 388: 138567.
[39] [39] ZHOU J, ZHAO B, SONG J, et al. Three-dimensional porous hierarchically architectured Li3VO4 anode materials for high-performance lithium-ion batteries[J]. ACS Appl Energ Mater,2019, 2(1): 354–362.
[40] [40] LIANG Z, ZHAO Y, OUYANG L, et al. Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries[J]. J Power Sources, 2014, 252: 244–247.
[41] [41] YANG Y, LI J, HE X, et al. A facile spray drying route for mesoporous Li3VO4/C hollow spheres as an anode for long life lithium ion batteries[J]. J Mater Chem A, 2016, 4(19): 7165–7168.
[42] [42] NI S, ZHANG J, MA J, et al. Superior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries[J]. J Mater Chem A,2015, 3(35): 17951–17955.
[43] [43] YANG G, ZHANG B, FENG J, et al. Morphology controlled lithium storage in Li3VO4 anodes[J]. J Mater Chem A, 2018, 6(2): 456–463.
[44] [44] ZHANG C, LIU C, NAN X, et al. Hollow–cuboid Li3VO4/C as high-performance anodes for lithium-ion batteries[J]. ACS Appl Mater Inter, 2015, 8(1): 680–688.
[45] [45] LI Q, WEI Q, SHENG J, et al. Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries[J]. Adv Sci, 2015, 2(12):1500284.
[46] [46] ZHANG C, SONG H, LIU C, et al. Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery[J].Adv Funct Mater, 2015, 25(23): 3497–3504.
[47] [47] DONG Y, ZHAO Y, DUAN H, et al. Li2.97Mg0.03VO4: High rate capability and cyclability performances anode material for rechargeable Li-ion batteries[J]. J Power Sources, 2016, 319: 104–110.
[48] [48] TRAN HUU H, VU N H, HA H, et al. Sub-micro droplet reactors for green synthesis of Li3VO4 anode materials in lithium ion batteries[J].Nat Commun, 2021, 12(1): 3081.
[49] [49] DONG Y, DUAN H, PARK K S, et al. Mo6+ doping in Li3VO4 anode for Li-ion batteries: Significantly improve the reversible capacity and rate performance[J]. ACS Appl Mater Inter, 2017, 9(33):27688–27696.
[50] [50] MU C, LEI K, LI H, et al. Enhanced conductivity and structure stability of Ti4+ doped Li3VO4 as anodes for lithium-ion batteries[J]. J Phys Chem C, 2017, 121(47): 26196–26201.
[51] [51] ZHAO L, DUAN H, ZHAO Y, et al. High capacity and stability of Nb-doped Li3VO4 as an anode material for lithium ion batteries[J]. J Power Sources, 2018, 378: 618–627.
[52] [52] LIU X, LI G, ZHANG D, et al. Fe-doped Li3VO4 as an excellent anode material for lithium ion batteries: Optimizing rate capability and cycling stability[J]. Electrochim Acta, 2019, 308: 185–194.
[53] [53] DOMPABLO M, AMADOR U, GALLARDO-AMORES J M, et al.Polymorphs of Li3PO4 and Li2MSiO4 (M=Mn, Co)[J]. J Power Sources,2009, 189(1): 638–642.
[54] [54] TAO Y, YI D, LI J. Electrochemical formation of crystalline Li3VO4/Li4SiO4 solid solutions film[J]. Solid State Ionics, 2008,179(40): 2396–2398.
[55] [55] LIAO C, WEN Y, XIA Z, et al. Si-doping mediated phase control from β- to γ-form Li3VO4 toward smoothing Li insertion/extraction[J]. Adv Energy Mater, 2018, 8(9): 1701621.
[56] [56] LIANG G, YANG L, HAN Q, et al. Conductive Li3.08Cr0.02Si0.09V0.9O4 anode material: Novel “zero-strain” characteristic and superior electrochemical Li+ storage[J]. Adv Energy Mater, 2020, 10(20):1904267.
[57] [57] SHEN L, LV H, CHEN S, et al. Peapod-like Li3VO4 /N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors[J]. Adv Mater, 2017, 29(27): 1700142.
[58] [58] ZHONG Y, XIA X, SHI F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Adv Sci, 2016, 3(5): 1500286.
[59] [59] LU X, YU M, ZHAI T, et al. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode[J]. Nano Lett, 2013, 13(6): 2628–2633.
[60] [60] SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat Commun, 2017, 8(1): 14627.
[61] [61] ZHANG K, WANG H, HE X, et al. A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage[J]. J Mater Chem, 2011, 21(32): 11916–11922.
[62] [62] LUCIO-PORTO R, BOUHTIYYA S, PIERSON J F, et al. VN thin films as electrode materials for electrochemical capacitors[J].Electrochim Acta, 2014, 141: 203–211.
[63] [63] HANUMANTHA P J, DATTA M K, KADAKIA K S, et al. A simple low temperature synthesis of nanostructured vanadium nitride for supercapacitor applications[J]. J Electrochem Soc, 2013, 160(11):A2195–A206.
[64] [64] SUN Q, FU Z-W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries[J]. Electrochim Acta, 2008, 54(2):403–409.
[65] [65] XIAO X, PENG X, JIN H, et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors[J]. Adv Mater, 2013, 25(36): 5091–5097.
[66] [66] BALAMURUGAN J, KARTHIKEYAN G, THANH T D, et al. Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors[J]. J Power Sources, 2016, 308: 149–157.
[67] [67] PENG X, LI W, WANG L, et al. Lithiation kinetics in high-performance porous vanadium nitride nanosheet anode[J]. Electrochim Acta, 2016, 214: 201–207.
[68] [68] YANG W, ZHU Y, JIA Z, et al. Interwoven nanowire based on-chip asymmetric microsupercapacitor with high integrability, areal energy, and power density[J]. Adv Energy Mater, 2020, 10(42): 2001873.
[69] [69] WANG R, LANG J, ZHANG P, et al. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors[J]. Adv Funct Mater,2015, 25(15): 2270–2278.
[70] [70] YUE Y, LIANG H. Micro- and nano-structured vanadium pentoxide(V2O5) for electrodes of lithium-ion batteries[J]. Adv Energy Mater,2017, 7(17): 1602545.
[71] [71] LIU H, ZHU Z, YAN Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63–67.
Get Citation
Copy Citation Text
CHEN Ziyang, REN Zhenghong, ZHANG Jinhui, SHEN Laifa. Application of Vanadium-Based Anode Materials for Lithium-Ion Capacitors[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 101
Special Issue:
Received: Aug. 19, 2021
Accepted: --
Published Online: Nov. 14, 2022
The Author Email: Ziyang CHEN (chenziyang7777@163.com)